Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions

This paper algorithmically and empirically studies five major types of nonparametric multivariate density estimation techniques, where no assumption is made about data being drawn from any of known parametric families of distribution. There is developed method of inversion formula where noise clust...

Full description

Bibliographic Details
Main Authors: Tomas Ruzgas, Mindaugas Kavaliauskas
Format: Article
Language:English
Published: Vilnius University Press 2005-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/30856
_version_ 1797194457010929664
author Tomas Ruzgas
Mindaugas Kavaliauskas
author_facet Tomas Ruzgas
Mindaugas Kavaliauskas
author_sort Tomas Ruzgas
collection DOAJ
description This paper algorithmically and empirically studies five major types of nonparametric multivariate density estimation techniques, where no assumption is made about data being drawn from any of known parametric families of distribution. There is developed method of inversion formula where noise cluster is included to general Gaussian mixture model.
first_indexed 2024-03-07T15:40:34Z
format Article
id doaj.art-538577a0d10941d1830e4e1c13a0041a
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-04-24T05:56:35Z
publishDate 2005-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-538577a0d10941d1830e4e1c13a0041a2024-04-23T09:01:16ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2005-12-0145spec.10.15388/LMR.2005.30856Nonparametric density estimation using a multidimensional mixture model of Gaussian distributionsTomas Ruzgas0Mindaugas KavaliauskasInstitute of Mathematics and Informatics This paper algorithmically and empirically studies five major types of nonparametric multivariate density estimation techniques, where no assumption is made about data being drawn from any of known parametric families of distribution. There is developed method of inversion formula where noise cluster is included to general Gaussian mixture model. https://www.journals.vu.lt/LMR/article/view/30856nonparametric density estimationinversion formulacharacteristic function
spellingShingle Tomas Ruzgas
Mindaugas Kavaliauskas
Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
Lietuvos Matematikos Rinkinys
nonparametric density estimation
inversion formula
characteristic function
title Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
title_full Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
title_fullStr Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
title_full_unstemmed Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
title_short Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
title_sort nonparametric density estimation using a multidimensional mixture model of gaussian distributions
topic nonparametric density estimation
inversion formula
characteristic function
url https://www.journals.vu.lt/LMR/article/view/30856
work_keys_str_mv AT tomasruzgas nonparametricdensityestimationusingamultidimensionalmixturemodelofgaussiandistributions
AT mindaugaskavaliauskas nonparametricdensityestimationusingamultidimensionalmixturemodelofgaussiandistributions