Preparation and Microstructure of Multi-Component High Entropy Alloy Powders Fabricated by Gas Atomization Method

As an attractive high-entropy alloy, AlCrCoNiCu high-entropy alloy has excellent corrosion resistance, wear resistance, and anti-bacterial capabilities, and is considered to be a potential substitute material for marine and nuclear industry materials with great potential. One key to further optimizi...

Full description

Bibliographic Details
Main Authors: Zhiqiang Ren, Sheng Zhu, Xiaoming Wang, Yang Zhao, Guofeng Han, Kebing Zhou, Wenyu Wang, Gen Tian
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/13/2/432
Description
Summary:As an attractive high-entropy alloy, AlCrCoNiCu high-entropy alloy has excellent corrosion resistance, wear resistance, and anti-bacterial capabilities, and is considered to be a potential substitute material for marine and nuclear industry materials with great potential. One key to further optimizing the performance of high entropy alloy was to prepare high entropy alloy powder materials with uniform composition, good flow-ability, and stable performance. In this work, the AlCrCoNiCu high entropy alloy powder was prepared by the gas atomization method. The results indicated that the powder was spherical in shape, homogeneous in composition, and composed of a face-center cubic (FCC) phase. After adding Fe and Mn elements, FCC and body-center cubic (BCC) phases appeared and the particle size of the powder was mainly located at 10–50 μm. Furthermore, the larger the particle size was, the more obvious the surface roughness was. With the decreasing powder size, its shape became relatively regular, and the surface roughness decreased. This work provided an experimental and theoretical reference for preparing high-performance single-phase and multi-phase high entropy alloy spherical powders.
ISSN:2075-4701