Noise Reduction Design with Trapezoidal Back-EMF and Asymmetric Air-Gap for Single-Phase BLDC Refrigerator Cooling Fan Motor

In this study, a novel method for reducing the noise generated by single-phase claw-pole motors employed as refrigerator fan blowers is proposed. A single-phase claw-pole motor has the advantages of low manufacturing cost, easy manufacturing, and a high number of turns. However, in such motors, curr...

Full description

Bibliographic Details
Main Authors: Jin-Hwan Lee, Sang-Yong Jung
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/17/5467
Description
Summary:In this study, a novel method for reducing the noise generated by single-phase claw-pole motors employed as refrigerator fan blowers is proposed. A single-phase claw-pole motor has the advantages of low manufacturing cost, easy manufacturing, and a high number of turns. However, in such motors, current delays occur owing to a high inductance; therefore, it is necessary to merge the back-electromotive force and current phases into the same phase using the phase advance method. Additionally, a single-phase motor exhibits dead torque and zero torque at an electrical angle of 180° owing to its electrical characteristics, and the dead torque deteriorates the average torque and torque ripple characteristics of the motor. In this study, a novel method is proposed to make the air gap asymmetrical by tilting the claw to reduce the noise generated by single-phase claw-pole motors. An asymmetric air gap allows the cogging torque to eliminate the dead torque caused by alignment torques, causing the torque ripple to decrease. To validate the effectiveness of the proposed method, the proposed model is compared with a base model via three-dimensional finite element analysis. Furthermore, the two models are manufactured and a noise test is conducted in an anechoic chamber to compare the noise difference between the two models.
ISSN:1996-1073