On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution

We give a definition of Green’s function of the general boundary value problems for non-self-adjoint second order differential equation with involution. The sufficient conditions for the basis property of system of eigenfunctions are established in the terms of the boundary conditions. Uniform equic...

Full description

Bibliographic Details
Main Authors: Abdissalam Sarsenbi, Abdizhahan Sarsenbi
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1972
_version_ 1797513057967013888
author Abdissalam Sarsenbi
Abdizhahan Sarsenbi
author_facet Abdissalam Sarsenbi
Abdizhahan Sarsenbi
author_sort Abdissalam Sarsenbi
collection DOAJ
description We give a definition of Green’s function of the general boundary value problems for non-self-adjoint second order differential equation with involution. The sufficient conditions for the basis property of system of eigenfunctions are established in the terms of the boundary conditions. Uniform equiconvergence of spectral expansions related to the second-order differential equations with involution:<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>q</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mi>y</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>λ</mi><mi>y</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>,</mo><mo>−</mo><mn>1</mn><mo><</mo><mi>x</mi><mo><</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> with the boundary conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mfenced separators="" open="(" close=")"><mrow><mo>−</mo><mn>1</mn></mrow></mfenced><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mi>y</mi><mfenced separators="" open="(" close=")"><mrow><mo>−</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><msup><mi>y</mi><mo>′</mo></msup><mfenced open="(" close=")"><mn>1</mn></mfenced><mo>+</mo><msub><mi>b</mi><mn>2</mn></msub><mi>y</mi><mfenced open="(" close=")"><mn>1</mn></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> is obtained. As a corollary, it is proved that the eigenfunctions of the perturbed boundary value problems form the basis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for any complex-valued coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∈</mo><mrow><msub><mi>L</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T06:10:21Z
format Article
id doaj.art-53909f6f54dd4a81bcea89c1617f1493
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T06:10:21Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-53909f6f54dd4a81bcea89c1617f14932023-11-22T20:11:50ZengMDPI AGSymmetry2073-89942021-10-011310197210.3390/sym13101972On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with InvolutionAbdissalam Sarsenbi0Abdizhahan Sarsenbi1Department of Mathematics, M. Auezov South Kazakhstan University, Shymkent 160000, KazakhstanDepartment of Mathematics, M. Auezov South Kazakhstan University, Shymkent 160000, KazakhstanWe give a definition of Green’s function of the general boundary value problems for non-self-adjoint second order differential equation with involution. The sufficient conditions for the basis property of system of eigenfunctions are established in the terms of the boundary conditions. Uniform equiconvergence of spectral expansions related to the second-order differential equations with involution:<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>q</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mi>y</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>λ</mi><mi>y</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>,</mo><mo>−</mo><mn>1</mn><mo><</mo><mi>x</mi><mo><</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> with the boundary conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mfenced separators="" open="(" close=")"><mrow><mo>−</mo><mn>1</mn></mrow></mfenced><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mi>y</mi><mfenced separators="" open="(" close=")"><mrow><mo>−</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><msup><mi>y</mi><mo>′</mo></msup><mfenced open="(" close=")"><mn>1</mn></mfenced><mo>+</mo><msub><mi>b</mi><mn>2</mn></msub><mi>y</mi><mfenced open="(" close=")"><mn>1</mn></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> is obtained. As a corollary, it is proved that the eigenfunctions of the perturbed boundary value problems form the basis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for any complex-valued coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∈</mo><mrow><msub><mi>L</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/13/10/1972differential equationinvolutionboundary value problemGreen’s functioneigenvalueeigenfunction
spellingShingle Abdissalam Sarsenbi
Abdizhahan Sarsenbi
On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
Symmetry
differential equation
involution
boundary value problem
Green’s function
eigenvalue
eigenfunction
title On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
title_full On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
title_fullStr On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
title_full_unstemmed On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
title_short On Eigenfunctions of the Boundary Value Problems for Second Order Differential Equations with Involution
title_sort on eigenfunctions of the boundary value problems for second order differential equations with involution
topic differential equation
involution
boundary value problem
Green’s function
eigenvalue
eigenfunction
url https://www.mdpi.com/2073-8994/13/10/1972
work_keys_str_mv AT abdissalamsarsenbi oneigenfunctionsoftheboundaryvalueproblemsforsecondorderdifferentialequationswithinvolution
AT abdizhahansarsenbi oneigenfunctionsoftheboundaryvalueproblemsforsecondorderdifferentialequationswithinvolution