Permutation patterns, Stanley symmetric functions, and the Edelman-Greene correspondence

Generalizing the notion of a vexillary permutation, we introduce a filtration of $S_{\infty}$ by the number of Edelman-Greene tableaux of a permutation, and show that each filtration level is characterized by avoiding a finite set of patterns. In doing so, we show that if $w$ is a permutation contai...

Full description

Bibliographic Details
Main Authors: Sara Billey, Brendan Pawlowski
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2013-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/12805/pdf
Description
Summary:Generalizing the notion of a vexillary permutation, we introduce a filtration of $S_{\infty}$ by the number of Edelman-Greene tableaux of a permutation, and show that each filtration level is characterized by avoiding a finite set of patterns. In doing so, we show that if $w$ is a permutation containing $v$ as a pattern, then there is an injection from the set of Edelman-Greene tableaux of $v$ to the set of Edelman-Greene tableaux of $w$ which respects inclusion of shapes. We also consider the set of permutations whose Edelman-Greene tableaux have distinct shapes, and show that it is closed under taking patterns.
ISSN:1365-8050