Fibroblast-like cells change gene expression of bone remodelling markers in transwell cultures

Abstract Introduction Periprosthetic fibroblast-like cells (PPFs) play an important role in aseptic loosening of arthroplasties. Various studies have examined PPF behavior in monolayer culture systems. However, the periprosthetic tissue is a three-dimensional (3D) mesh, which allows the cells to int...

Full description

Bibliographic Details
Main Authors: Eliza S. Hartmann, Sabine Schluessel, Miriam I. Köhler, Felicitas Beck, Julia I. Redeker, Burkhard Summer, Veronika Schönitzer, Andreas Fottner, Susanne Mayer-Wagner
Format: Article
Language:English
Published: BMC 2020-10-01
Series:European Journal of Medical Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40001-020-00453-y
Description
Summary:Abstract Introduction Periprosthetic fibroblast-like cells (PPFs) play an important role in aseptic loosening of arthroplasties. Various studies have examined PPF behavior in monolayer culture systems. However, the periprosthetic tissue is a three-dimensional (3D) mesh, which allows the cells to interact in a multidirectional way. The expression of bone remodeling markers of fibroblast-like cells in a multilayer environment changes significantly versus monolayer cultures without the addition of particles or cytokine stimulation. Gene expression of bone remodeling markers was therefore compared in fibroblast-like cells from different origins and dermal fibroblasts under transwell culture conditions versus monolayer cultures. Methods PPFs from periprosthetic tissues (n = 12), osteoarthritic (OA) synovial fibroblast-like cells (SFs) (n = 6), and dermal fibroblasts (DFs) were cultured in monolayer (density 5.5 × 103/cm2) or multilayer cultures (density 8.5 × 105/cm2) for 10 or 21 days. Cultures were examined via histology, TRAP staining, immunohistochemistry (anti-S100a4), and quantitative real-time PCR. Results Fibroblast-like cells (PPFs/SFs) and dermal fibroblasts significantly increased the expression of RANKL and significantly decreased the expression of ALP, COL1A1, and OPG in multilayer cultures. PPFs and SFs in multilayer cultures further showed a higher expression of cathepsin K, MMP-13, and TNF-α. In multilayer PPF cultures, the mRNA level of TRAP was also found to be significantly increased. Conclusion The multilayer cultures are able to induce significant expression changes in fibroblast-like cells depending on the nature of cellular origin without the addition of any further stimulus. This system might be a useful tool to get more in vivo like results regarding fibroblast-like cell cultures.
ISSN:2047-783X