Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging

Background: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identific...

Full description

Bibliographic Details
Main Authors: Olle Holmberg, Tobias Lenz, Valentin Koch, Aseel Alyagoob, Léa Utsch, Andreas Rank, Emina Sabic, Masaru Seguchi, Erion Xhepa, Sebastian Kufner, Salvatore Cassese, Adnan Kastrati, Carsten Marr, Michael Joner, Philipp Nicol
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-12-01
Series:Frontiers in Cardiovascular Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcvm.2021.779807/full
_version_ 1831813384032485376
author Olle Holmberg
Olle Holmberg
Tobias Lenz
Valentin Koch
Valentin Koch
Aseel Alyagoob
Léa Utsch
Andreas Rank
Emina Sabic
Masaru Seguchi
Erion Xhepa
Sebastian Kufner
Salvatore Cassese
Adnan Kastrati
Adnan Kastrati
Carsten Marr
Carsten Marr
Michael Joner
Michael Joner
Philipp Nicol
author_facet Olle Holmberg
Olle Holmberg
Tobias Lenz
Valentin Koch
Valentin Koch
Aseel Alyagoob
Léa Utsch
Andreas Rank
Emina Sabic
Masaru Seguchi
Erion Xhepa
Sebastian Kufner
Salvatore Cassese
Adnan Kastrati
Adnan Kastrati
Carsten Marr
Carsten Marr
Michael Joner
Michael Joner
Philipp Nicol
author_sort Olle Holmberg
collection DOAJ
description Background: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identification of patients at risk. We trained a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to predict atherosclerotic lesions in optical coherence tomography (OCT).Methods: Two datasets were used for training DeepAD: (i) a histopathology data set from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT frames in which manual annotations were based on clinical expertise only. A U-net based deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic lesion prediction algorithm. Results were analyzed using intersection over union (IOU) for segmentation.Results: DeepAD showed good performance regarding the prediction of atherosclerotic lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions. Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without histopathology-based annotations, a performance drop of >0.25 IOU was observed. The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n = 11 cases), showing high sensitivity as well as specificity and similar performance when compared to manual expert analysis.Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using a histopathology-based deep-learning algorithm, allowing accurate detection in the clinical setting. An automated decision-support tool based on DeepAD could help in risk prediction and guide interventional treatment decisions.
first_indexed 2024-12-22T21:53:16Z
format Article
id doaj.art-53d95aca30224c2dbe27d4e805522e43
institution Directory Open Access Journal
issn 2297-055X
language English
last_indexed 2024-12-22T21:53:16Z
publishDate 2021-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cardiovascular Medicine
spelling doaj.art-53d95aca30224c2dbe27d4e805522e432022-12-21T18:11:18ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2021-12-01810.3389/fcvm.2021.779807779807Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular ImagingOlle Holmberg0Olle Holmberg1Tobias Lenz2Valentin Koch3Valentin Koch4Aseel Alyagoob5Léa Utsch6Andreas Rank7Emina Sabic8Masaru Seguchi9Erion Xhepa10Sebastian Kufner11Salvatore Cassese12Adnan Kastrati13Adnan Kastrati14Carsten Marr15Carsten Marr16Michael Joner17Michael Joner18Philipp Nicol19Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, GermanySchool of Life Sciences Weihenstephan, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyInstitute of AI for Health, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, GermanyTUM Department of Informatics, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyDeutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, GermanyInstitute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, GermanyInstitute of AI for Health, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyDeutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, GermanyKlinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, GermanyBackground: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identification of patients at risk. We trained a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to predict atherosclerotic lesions in optical coherence tomography (OCT).Methods: Two datasets were used for training DeepAD: (i) a histopathology data set from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT frames in which manual annotations were based on clinical expertise only. A U-net based deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic lesion prediction algorithm. Results were analyzed using intersection over union (IOU) for segmentation.Results: DeepAD showed good performance regarding the prediction of atherosclerotic lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions. Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without histopathology-based annotations, a performance drop of >0.25 IOU was observed. The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n = 11 cases), showing high sensitivity as well as specificity and similar performance when compared to manual expert analysis.Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using a histopathology-based deep-learning algorithm, allowing accurate detection in the clinical setting. An automated decision-support tool based on DeepAD could help in risk prediction and guide interventional treatment decisions.https://www.frontiersin.org/articles/10.3389/fcvm.2021.779807/fulldeep learningartificial intelligenceintravascular imagingatherosclerosishistopathologyoptical coherence tomography
spellingShingle Olle Holmberg
Olle Holmberg
Tobias Lenz
Valentin Koch
Valentin Koch
Aseel Alyagoob
Léa Utsch
Andreas Rank
Emina Sabic
Masaru Seguchi
Erion Xhepa
Sebastian Kufner
Salvatore Cassese
Adnan Kastrati
Adnan Kastrati
Carsten Marr
Carsten Marr
Michael Joner
Michael Joner
Philipp Nicol
Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
Frontiers in Cardiovascular Medicine
deep learning
artificial intelligence
intravascular imaging
atherosclerosis
histopathology
optical coherence tomography
title Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
title_full Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
title_fullStr Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
title_full_unstemmed Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
title_short Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
title_sort histopathology based deep learning predicts atherosclerotic lesions in intravascular imaging
topic deep learning
artificial intelligence
intravascular imaging
atherosclerosis
histopathology
optical coherence tomography
url https://www.frontiersin.org/articles/10.3389/fcvm.2021.779807/full
work_keys_str_mv AT olleholmberg histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT olleholmberg histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT tobiaslenz histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT valentinkoch histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT valentinkoch histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT aseelalyagoob histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT leautsch histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT andreasrank histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT eminasabic histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT masaruseguchi histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT erionxhepa histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT sebastiankufner histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT salvatorecassese histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT adnankastrati histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT adnankastrati histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT carstenmarr histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT carstenmarr histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT michaeljoner histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT michaeljoner histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging
AT philippnicol histopathologybaseddeeplearningpredictsatheroscleroticlesionsinintravascularimaging