Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019. The experimental treatments consisted of five...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-11-01
|
Series: | Journal of Integrative Agriculture |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095311923003003 |
_version_ | 1827714831429402624 |
---|---|
author | Jin-shun BAI Shui-qing ZHANG Shao-min HUANG Xin-peng XU Shi-cheng ZHAO Shao-jun QIU Ping HE Wei ZHOU |
author_facet | Jin-shun BAI Shui-qing ZHANG Shao-min HUANG Xin-peng XU Shi-cheng ZHAO Shao-jun QIU Ping HE Wei ZHOU |
author_sort | Jin-shun BAI |
collection | DOAJ |
description | To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers. |
first_indexed | 2024-03-10T19:05:02Z |
format | Article |
id | doaj.art-53d9b4c5addf461dbc5612131743e213 |
institution | Directory Open Access Journal |
issn | 2095-3119 |
language | English |
last_indexed | 2024-03-10T19:05:02Z |
publishDate | 2023-11-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Integrative Agriculture |
spelling | doaj.art-53d9b4c5addf461dbc5612131743e2132023-11-20T04:11:40ZengElsevierJournal of Integrative Agriculture2095-31192023-11-01221135173534Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year studyJin-shun BAI0Shui-qing ZHANG1Shao-min HUANG2Xin-peng XU3Shi-cheng ZHAO4Shao-jun QIU5Ping HE6Wei ZHOU7State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.ChinaInstitute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R.ChinaInstitute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R.ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Correspondence QIU Shao-jun, Tel/Fax: +86-10-82105029State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China; Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.ChinaTo understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.http://www.sciencedirect.com/science/article/pii/S2095311923003003soil aggregate fractionssoil organic mattermanure applicationstraw returnC:N ratio |
spellingShingle | Jin-shun BAI Shui-qing ZHANG Shao-min HUANG Xin-peng XU Shi-cheng ZHAO Shao-jun QIU Ping HE Wei ZHOU Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study Journal of Integrative Agriculture soil aggregate fractions soil organic matter manure application straw return C:N ratio |
title | Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study |
title_full | Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study |
title_fullStr | Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study |
title_full_unstemmed | Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study |
title_short | Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study |
title_sort | effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen a 30 year study |
topic | soil aggregate fractions soil organic matter manure application straw return C:N ratio |
url | http://www.sciencedirect.com/science/article/pii/S2095311923003003 |
work_keys_str_mv | AT jinshunbai effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT shuiqingzhang effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT shaominhuang effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT xinpengxu effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT shichengzhao effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT shaojunqiu effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT pinghe effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy AT weizhou effectsofthecombinedapplicationoforganicandchemicalnitrogenfertilizeronsoilaggregatecarbonandnitrogena30yearstudy |