Transparent Nanopaper from Nanofibrillated Bamboo Pulp

Bamboo pulp was used to produce modified cellulose nanofiber (M-CNF) with 3,4-dichlorophenyl isocyanate through a one-step mechano-chemical method by ball milling. The structural variations of bamboo cellulose with different degrees of substitution (DS) for hydroxyl groups were studied by FTIR, XRD,...

Full description

Bibliographic Details
Main Authors: Xuran Liu, Xilong Dong, Hongkun Wang, Min Wu, Yong Huang
Format: Article
Language:English
Published: North Carolina State University 2023-05-01
Series:BioResources
Subjects:
Online Access:https://ojs.cnr.ncsu.edu/index.php/BRJ/article/view/22534
Description
Summary:Bamboo pulp was used to produce modified cellulose nanofiber (M-CNF) with 3,4-dichlorophenyl isocyanate through a one-step mechano-chemical method by ball milling. The structural variations of bamboo cellulose with different degrees of substitution (DS) for hydroxyl groups were studied by FTIR, XRD, TEM, AFM, and elemental analysis. The DS was as high as 0.88 after just 2 h of ball milling, and the diameter of M-CNF was 2 to 3 nm after just 1 h of ball milling. The modified nanocellulose was hydrophobic, with a water contact angle as high as 87°. The nanopaper made from the nanocellulose by vacuum filtration was transparent, with an optical transparence up to 88.8% at 550 nm. However, the transmittance of the modified nanopaper decreased to nearly 0 over the wavelength range of 200 to 300 nm. This nanopaper can be used as flexible optoelectronic material, packing material, or ultraviolet shielding material.
ISSN:1930-2126