Optimalisasi K-MEDOID dalam Pengklasteran Mahasiswa Pelamar Beasiswa dengan CUBIC CLUSTERING CRITERION

Beasiswa merupakan salah satu bantuan belajar yang diberikan kepada mahasiswa. Salah satu beasiswa yang ada adalah beasiswa yang diberikan oleh negara dengan nama Bantuan Belajar Mahasiswa (BBM). Pengelompokan data mahasiswa penerima beasiswa berguna untuk menentukan mahasiswa yang berhak, dipertimb...

Full description

Bibliographic Details
Main Authors: Sofi Defiyanti, Mohamad Jajuli, Nurul Rohmawati
Format: Article
Language:Indonesian
Published: Universitas Andalas 2017-05-01
Series:Jurnal Teknologi dan Sistem Informasi
Subjects:
Online Access:https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/222
Description
Summary:Beasiswa merupakan salah satu bantuan belajar yang diberikan kepada mahasiswa. Salah satu beasiswa yang ada adalah beasiswa yang diberikan oleh negara dengan nama Bantuan Belajar Mahasiswa (BBM). Pengelompokan data mahasiswa penerima beasiswa berguna untuk menentukan mahasiswa yang berhak, dipertimbangkan atau tidak berhak. Dengan pengelompokan mahasiswa penerima beasiswa ini dapat memudahkan pihak tata usaha dalam menentukan penerima beasiswa khususnya beasiswa BBM. Pengelompokan tersebut dalam dilakukan dengan menggunakan teknik klustering berbasis partisi yaitu dengan algoritma K-Medoids.  Data-data yang didapat untuk dilakukan pengelompokan terdiri dari atribut SKS, IPK, Tanggungan orang tua dan jumlah penghasilan orang tua. Dari data-data yang didapat memiliki nilai yang beragam dan memiliki rentang satu dengan yang lainnya berjauhan. Maka dilakukan tiga buah skenario, yaitu 1: semua data yang didapat dilakukan pengelompokan dengan K-Medoids, 2 : sebagian data yang didapat dilakukan kodefikasi, 3 : semua data yang ada dilakukan kodefikasi. Dari ketiga skenario yang dilakukan didapat nilai Cubic Clustering Criterion (CCC). Dataset kodifikasi keseluruhan menunjukkan nilai CCC berada diantara 2 sampai 3 ini menunjukkan bahwa dataset kodifikasi keseluruhan mempunyai keseragaman yang baik. Hal ini dikarenakan semua nilai pada setiap atribut memiliki nilai yang hampir sama.
ISSN:2460-3465
2476-8812