A pathological example in nonlinear spectral theory
We construct an open set Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}} on which an eigenvalue problem for the p-Laplacian has no isolated first eigenvalue and the spectrum is not discrete. The same example shows that the usual Lusternik–Schnirelmann minimax construction does not exhaust the whole spectrum of th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2017-08-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2017-0043 |
Summary: | We construct an open set Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}} on which an eigenvalue problem for the p-Laplacian has no isolated first eigenvalue and the spectrum is not discrete. The same example shows that the usual Lusternik–Schnirelmann minimax construction does not exhaust the whole spectrum of this eigenvalue problem. |
---|---|
ISSN: | 2191-9496 2191-950X |