Summary: | The tensile test always delivers an in-depth understanding of true stress-strain relationship. However, it is not easy for the researchers to understand and evaluate the tensile properties of micro-specimens. This paper presents a research work aiming at the design and manufacturing of a small universal test machine (UTM) for measuring the mechanical properties of the miniaturised samples. The newly developed machine is sensitive to small loads and permits to obtain the stress-strain curves for thin materials. This portable UTM consists of a stepper motor, a load cell, a linear variable differential transformer (LVDT), a load cell amplifier and a data acquisition system. Copper based small and thin (50 μm) tensile test samples were tested on this machine at room temperature, and the calculated results were compared with the test results derived from a commercial UTM (METEX - 1 kN) to justify the validation of the developed apparatus. The obtained mechanical properties are in good agreement with the values obtained from a commercial UTM. To confirm the possibility of in-situ micro-observation, the surface roughness analysis has been conducted on the developed apparatus for pure copper foils under 3D laser-confocal microscope. Finally, it is concluded that this kind of testing apparatus could be manufactured within a manageable budget.
|