Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility

We consider a stochastic differential equation of the form \[ dX_{t}=\theta a(t,X_{t})\hspace{0.1667em}dt+\sigma _{1}(t,X_{t})\sigma _{2}(t,Y_{t})\hspace{0.1667em}dW_{t}\] with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for...

Full description

Bibliographic Details
Main Authors: Meriem Bel Hadj Khlifa, Yuliya Mishura, Kostiantyn Ralchenko, Mounir Zili
Format: Article
Language:English
Published: VTeX 2016-12-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA66
_version_ 1818493322043326464
author Meriem Bel Hadj Khlifa
Yuliya Mishura
Kostiantyn Ralchenko
Mounir Zili
author_facet Meriem Bel Hadj Khlifa
Yuliya Mishura
Kostiantyn Ralchenko
Mounir Zili
author_sort Meriem Bel Hadj Khlifa
collection DOAJ
description We consider a stochastic differential equation of the form \[ dX_{t}=\theta a(t,X_{t})\hspace{0.1667em}dt+\sigma _{1}(t,X_{t})\sigma _{2}(t,Y_{t})\hspace{0.1667em}dW_{t}\] with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.
first_indexed 2024-12-10T17:53:21Z
format Article
id doaj.art-541b0bbf26b3470387dfaea915e9c888
institution Directory Open Access Journal
issn 2351-6046
2351-6054
language English
last_indexed 2024-12-10T17:53:21Z
publishDate 2016-12-01
publisher VTeX
record_format Article
series Modern Stochastics: Theory and Applications
spelling doaj.art-541b0bbf26b3470387dfaea915e9c8882022-12-22T01:39:00ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542016-12-013426928510.15559/16-VMSTA66Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatilityMeriem Bel Hadj Khlifa0Yuliya Mishura1Kostiantyn Ralchenko2Mounir Zili3University of Monastir, Faculty of Sciences of Monastir, Department of Mathematics, Avenue de l’Environnement, 5000, Monastir, TunisiaDepartment of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska, 01601 Kyiv, UkraineDepartment of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska, 01601 Kyiv, UkraineUniversity of Monastir, Faculty of Sciences of Monastir, Department of Mathematics, Avenue de l’Environnement, 5000, Monastir, TunisiaWe consider a stochastic differential equation of the form \[ dX_{t}=\theta a(t,X_{t})\hspace{0.1667em}dt+\sigma _{1}(t,X_{t})\sigma _{2}(t,Y_{t})\hspace{0.1667em}dW_{t}\] with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA66Stochastic differential equationweak and strong solutionsstochastic volatilitydrift parameter estimationmaximum likelihood estimatorstrong consistency
spellingShingle Meriem Bel Hadj Khlifa
Yuliya Mishura
Kostiantyn Ralchenko
Mounir Zili
Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
Modern Stochastics: Theory and Applications
Stochastic differential equation
weak and strong solutions
stochastic volatility
drift parameter estimation
maximum likelihood estimator
strong consistency
title Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
title_full Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
title_fullStr Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
title_full_unstemmed Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
title_short Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
title_sort drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
topic Stochastic differential equation
weak and strong solutions
stochastic volatility
drift parameter estimation
maximum likelihood estimator
strong consistency
url https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA66
work_keys_str_mv AT meriembelhadjkhlifa driftparameterestimationinstochasticdifferentialequationwithmultiplicativestochasticvolatility
AT yuliyamishura driftparameterestimationinstochasticdifferentialequationwithmultiplicativestochasticvolatility
AT kostiantynralchenko driftparameterestimationinstochasticdifferentialequationwithmultiplicativestochasticvolatility
AT mounirzili driftparameterestimationinstochasticdifferentialequationwithmultiplicativestochasticvolatility