Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning

Seawater pH is a direct proxy of ocean acidification, and monitoring the global pH distribution and long-term series changes is critical to understanding the changes and responses of the marine ecology and environment under climate change. Owing to the lack of sufficient global-scale pH data and the...

Full description

Bibliographic Details
Main Authors: Zhiting Jiang, Zigeng Song, Yan Bai, Xianqiang He, Shujie Yu, Siqi Zhang, Fang Gong
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/10/2366
_version_ 1797495948992053248
author Zhiting Jiang
Zigeng Song
Yan Bai
Xianqiang He
Shujie Yu
Siqi Zhang
Fang Gong
author_facet Zhiting Jiang
Zigeng Song
Yan Bai
Xianqiang He
Shujie Yu
Siqi Zhang
Fang Gong
author_sort Zhiting Jiang
collection DOAJ
description Seawater pH is a direct proxy of ocean acidification, and monitoring the global pH distribution and long-term series changes is critical to understanding the changes and responses of the marine ecology and environment under climate change. Owing to the lack of sufficient global-scale pH data and the complex relationship between seawater pH and related environmental variables, generating time-series products of satellite-derived global sea surface pH poses a great challenge. In this study, we solved the problem of the lack of sufficient data for pH algorithm development by using the massive underway sea surface carbon dioxide partial pressure (<i>p</i>CO<sub>2</sub>) dataset to structure a large data volume of near <i>in situ</i> pH based on carbonate calculation between underway <i>p</i>CO<sub>2</sub> and calculated total alkalinity from sea surface salinity and relevant parameters. The remote sensing inversion model of pH was then constructed through this massive pH training dataset and machine learning methods. After several tests of machine learning methods and groups of input parameters, we chose the random forest model with longitude, latitude, sea surface temperature (SST), chlorophyll a (Chla), and Mixed layer depth (MLD) as model inputs with the best performance of correlation coefficient (R<sup>2</sup> = 0.96) and root mean squared error (RMSE = 0.008) in the training set and R<sup>2</sup> = 0.83 (RMSE = 0.017) in the testing set. The sensitivity analysis of the error variation induced by the uncertainty of SST and Chla (SST ≤ ±0.5 °C and Chla ≤ ±20%; RMSE<sub>SST</sub> ≤ 0.011 and RMSE<sub>Chla</sub> ≤ 0.009) indicated that our sea surface pH model had good robustness. Monthly average global sea surface pH products from 2004 to 2019 with a spatial resolution of 0.25° × 0.25° were produced based on the satellite-derived SST and Chla products and modeled MLD dataset. The pH model and products were validated using another independent station-measured pH dataset from the Global Ocean Data Analysis Project (GLODAP), showing good performance. With the time-series pH products, refined interannual variability and seasonal variability were presented, and trends of pH decline were found globally. Our study provides a new method of directly using remote sensing to invert pH instead of indirect calculation based on the construction of massive underway calculated pH data, which would be made useful by comparing it with satellite-derived <i>p</i>CO<sub>2</sub> products to understand the carbonate system change and the ocean ecological environments responding to the global change.
first_indexed 2024-03-10T01:56:48Z
format Article
id doaj.art-54207f813c2545f4a727f630aa275ac4
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T01:56:48Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-54207f813c2545f4a727f630aa275ac42023-11-23T12:55:03ZengMDPI AGRemote Sensing2072-42922022-05-011410236610.3390/rs14102366Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine LearningZhiting Jiang0Zigeng Song1Yan Bai2Xianqiang He3Shujie Yu4Siqi Zhang5Fang Gong6School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, ChinaState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, ChinaSchool of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, ChinaSchool of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, ChinaState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, ChinaState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, ChinaState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, ChinaSeawater pH is a direct proxy of ocean acidification, and monitoring the global pH distribution and long-term series changes is critical to understanding the changes and responses of the marine ecology and environment under climate change. Owing to the lack of sufficient global-scale pH data and the complex relationship between seawater pH and related environmental variables, generating time-series products of satellite-derived global sea surface pH poses a great challenge. In this study, we solved the problem of the lack of sufficient data for pH algorithm development by using the massive underway sea surface carbon dioxide partial pressure (<i>p</i>CO<sub>2</sub>) dataset to structure a large data volume of near <i>in situ</i> pH based on carbonate calculation between underway <i>p</i>CO<sub>2</sub> and calculated total alkalinity from sea surface salinity and relevant parameters. The remote sensing inversion model of pH was then constructed through this massive pH training dataset and machine learning methods. After several tests of machine learning methods and groups of input parameters, we chose the random forest model with longitude, latitude, sea surface temperature (SST), chlorophyll a (Chla), and Mixed layer depth (MLD) as model inputs with the best performance of correlation coefficient (R<sup>2</sup> = 0.96) and root mean squared error (RMSE = 0.008) in the training set and R<sup>2</sup> = 0.83 (RMSE = 0.017) in the testing set. The sensitivity analysis of the error variation induced by the uncertainty of SST and Chla (SST ≤ ±0.5 °C and Chla ≤ ±20%; RMSE<sub>SST</sub> ≤ 0.011 and RMSE<sub>Chla</sub> ≤ 0.009) indicated that our sea surface pH model had good robustness. Monthly average global sea surface pH products from 2004 to 2019 with a spatial resolution of 0.25° × 0.25° were produced based on the satellite-derived SST and Chla products and modeled MLD dataset. The pH model and products were validated using another independent station-measured pH dataset from the Global Ocean Data Analysis Project (GLODAP), showing good performance. With the time-series pH products, refined interannual variability and seasonal variability were presented, and trends of pH decline were found globally. Our study provides a new method of directly using remote sensing to invert pH instead of indirect calculation based on the construction of massive underway calculated pH data, which would be made useful by comparing it with satellite-derived <i>p</i>CO<sub>2</sub> products to understand the carbonate system change and the ocean ecological environments responding to the global change.https://www.mdpi.com/2072-4292/14/10/2366random forest modelglobal sea surface pHremote sensing inversiontotal alkalinitycarbonate system
spellingShingle Zhiting Jiang
Zigeng Song
Yan Bai
Xianqiang He
Shujie Yu
Siqi Zhang
Fang Gong
Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
Remote Sensing
random forest model
global sea surface pH
remote sensing inversion
total alkalinity
carbonate system
title Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
title_full Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
title_fullStr Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
title_full_unstemmed Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
title_short Remote Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine Learning
title_sort remote sensing of global sea surface ph based on massive underway data and machine learning
topic random forest model
global sea surface pH
remote sensing inversion
total alkalinity
carbonate system
url https://www.mdpi.com/2072-4292/14/10/2366
work_keys_str_mv AT zhitingjiang remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT zigengsong remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT yanbai remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT xianqianghe remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT shujieyu remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT siqizhang remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning
AT fanggong remotesensingofglobalseasurfacephbasedonmassiveunderwaydataandmachinelearning