Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems

In this paper, we revisit the <i>q</i>-state clock model for small systems. We present results for the thermodynamics of the <i>q</i>-state clock model for values from <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q<...

Full description

Bibliographic Details
Main Authors: Oscar A. Negrete, Patricio Vargas, Francisco J. Peña, Gonzalo Saravia, Eugenio E. Vogel
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/20/12/933
_version_ 1817995119750545408
author Oscar A. Negrete
Patricio Vargas
Francisco J. Peña
Gonzalo Saravia
Eugenio E. Vogel
author_facet Oscar A. Negrete
Patricio Vargas
Francisco J. Peña
Gonzalo Saravia
Eugenio E. Vogel
author_sort Oscar A. Negrete
collection DOAJ
description In this paper, we revisit the <i>q</i>-state clock model for small systems. We present results for the thermodynamics of the <i>q</i>-state clock model for values from <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math> </inline-formula> for small square lattices of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>&#215;</mo> <mi>L</mi> </mrow> </semantics> </math> </inline-formula>, with L ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>64</mn> </mrow> </semantics> </math> </inline-formula> with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii&#8315;Kosterlitz&#8315;Thouless (BKT)-like transition appears for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&gt;</mo> <mn>5</mn></mrow></semantics></math></inline-formula>, regardless of lattice size, while this transition at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> is lost for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>&lt;</mo> <mn>10</mn></mrow></semantics></math></inline-formula>; for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&#8804;</mo> <mn>4</mn></mrow></semantics></math></inline-formula>, the BKT transition is never present. We present the phase diagram in terms of <i>q</i> that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>2</mn></msub></semantics></math></inline-formula>. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as <i>q</i> increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed.
first_indexed 2024-04-14T02:01:22Z
format Article
id doaj.art-544591008d104491908e5be5a0f458df
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-14T02:01:22Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-544591008d104491908e5be5a0f458df2022-12-22T02:18:49ZengMDPI AGEntropy1099-43002018-12-01201293310.3390/e20120933e20120933Entropy and Mutability for the <i>q</i>-State Clock Model in Small SystemsOscar A. Negrete0Patricio Vargas1Francisco J. Peña2Gonzalo Saravia3Eugenio E. Vogel4Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, ChileDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, ChileDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, ChileDepartamento de Ciencias Físicas, Universidad de La Frontera, Temuco 4811230, ChileCentro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago 8320000, ChileIn this paper, we revisit the <i>q</i>-state clock model for small systems. We present results for the thermodynamics of the <i>q</i>-state clock model for values from <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math> </inline-formula> for small square lattices of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>&#215;</mo> <mi>L</mi> </mrow> </semantics> </math> </inline-formula>, with L ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>64</mn> </mrow> </semantics> </math> </inline-formula> with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii&#8315;Kosterlitz&#8315;Thouless (BKT)-like transition appears for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&gt;</mo> <mn>5</mn></mrow></semantics></math></inline-formula>, regardless of lattice size, while this transition at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> is lost for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>&lt;</mo> <mn>10</mn></mrow></semantics></math></inline-formula>; for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&#8804;</mo> <mn>4</mn></mrow></semantics></math></inline-formula>, the BKT transition is never present. We present the phase diagram in terms of <i>q</i> that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>2</mn></msub></semantics></math></inline-formula>. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as <i>q</i> increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed.https://www.mdpi.com/1099-4300/20/12/933<i>q</i>-state clock modelentropyBerezinskii–Kosterlitz–Thouless transition
spellingShingle Oscar A. Negrete
Patricio Vargas
Francisco J. Peña
Gonzalo Saravia
Eugenio E. Vogel
Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
Entropy
<i>q</i>-state clock model
entropy
Berezinskii–Kosterlitz–Thouless transition
title Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
title_full Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
title_fullStr Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
title_full_unstemmed Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
title_short Entropy and Mutability for the <i>q</i>-State Clock Model in Small Systems
title_sort entropy and mutability for the i q i state clock model in small systems
topic <i>q</i>-state clock model
entropy
Berezinskii–Kosterlitz–Thouless transition
url https://www.mdpi.com/1099-4300/20/12/933
work_keys_str_mv AT oscaranegrete entropyandmutabilityfortheiqistateclockmodelinsmallsystems
AT patriciovargas entropyandmutabilityfortheiqistateclockmodelinsmallsystems
AT franciscojpena entropyandmutabilityfortheiqistateclockmodelinsmallsystems
AT gonzalosaravia entropyandmutabilityfortheiqistateclockmodelinsmallsystems
AT eugenioevogel entropyandmutabilityfortheiqistateclockmodelinsmallsystems