Myocardial Glutathione Synthase and TRXIP Expression Are Significantly Elevated in Hypertension and Diabetes: Influence of Stress on Antioxidant Pathways

Antioxidant protection is one of the key reactions of cardiomyocytes (CMCs) in response to myocardial damage of various origins. The thioredoxin interacting protein (TXNIP) is an inhibitor of thioredoxin (TXN). Over the recent few years, TXNIP has received significant attention due to its wide range...

Full description

Bibliographic Details
Main Authors: Anastasia Sklifasovskaya, Mikhail Blagonravov, Madina Azova, Vyacheslav Goryachev
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Pathophysiology
Subjects:
Online Access:https://www.mdpi.com/1873-149X/30/2/21
Description
Summary:Antioxidant protection is one of the key reactions of cardiomyocytes (CMCs) in response to myocardial damage of various origins. The thioredoxin interacting protein (TXNIP) is an inhibitor of thioredoxin (TXN). Over the recent few years, TXNIP has received significant attention due to its wide range of functions in energy metabolism. In the present work, we studied the features of the redox-thiol systems, in particular, the amount of TXNIP and glutathione synthetase (GS) as markers of oxidative damage to CMCs and antioxidant protection, respectively. This study was carried out on 38-week-old Wistar-Kyoto rats with insulin-dependent diabetes mellitus (DM) induced by streptozotocin, on 38- and 57-week-old hypertensive SHR rats and on a model of combined hypertension and DM (38-week-old SHR rats with DM). It was found that the amount of TXNIP increased in 57-week-old SHR rats, in diabetic rats and in SHR rats with DM. In 38-week-old SHR rats, the expression of TXNIP significantly decreased. The expression of GS was significantly higher compared with the controls in 57-week-old SHR rats, in DM rats and in the case of the combination of hypertension and DM. The obtained data show that myocardial damage caused by DM and hypertension are accompanied by the activation of oxidative stress and antioxidant protection.
ISSN:1873-149X