Review of the Status and Developments in Seaweed Farming Infrastructure

This study provides an overview of both traditional nearshore seaweed farming infrastructure and more recent developments intended for large scale farming in more exposed coastal waters where nutrient supply may be a limiting factor. The success of multi-species integrated multi-trophic aquaculture...

Full description

Bibliographic Details
Main Authors: Robert Maxwell Tullberg, Huu Phu Nguyen, Chien Ming Wang
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/10/10/1447
Description
Summary:This study provides an overview of both traditional nearshore seaweed farming infrastructure and more recent developments intended for large scale farming in more exposed coastal waters where nutrient supply may be a limiting factor. The success of multi-species integrated multi-trophic aquaculture (IMTA) methods predominantly in East Asia is a clear low cost path to scaling up seaweed cultivation in the broader world that provides for both synergistic sharing of nutrients and reduction in water eutrophication. A number of innovations intended to adapt farming methods to deeper or more exposed coastal waters and semi-automate cultivation steps promise to maintain the viability of farming in higher labour cost countries. Co-location of IMTA/finfish and seaweed farming with grid-connected offshore renewable energy (primarily offshore wind) shows the greatest synergistic benefits for marine space usage, decarbonisation, and nutrient management. Seaweed growth can be accelerated by cycling farm infrastructure between the near surface and nutrient richer depths or upwelling cooler nutrient rich water to sub-surface seaweed crops. Such systems would inevitably require significant increases in infrastructure complexity and costs, jeopardizing their economic viability. Combinations of seaweed and higher value aquaculture products may improve the viability of such novel systems.
ISSN:2077-1312