Twin minus domination numbers in directed graphs

Let $D=(V,A)$ be a finite simple directed graph‎. ‎A‎ ‎function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus‎ ‎dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge‎ ‎1$ for each vertex $v\in V$‎. ‎The twin minus domination number of‎ ‎$D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbo...

Full description

Bibliographic Details
Main Authors: M‎. ‎Atapour, A‎. ‎Khodkar
Format: Article
Language:English
Published: Azarbaijan Shahide Madani University 2016-06-01
Series:Communications in Combinatorics and Optimization
Subjects:
Online Access:http://comb-opt.azaruniv.ac.ir/article_13575.html
_version_ 1818790260682784768
author M‎. ‎Atapour
A‎. ‎Khodkar
author_facet M‎. ‎Atapour
A‎. ‎Khodkar
author_sort M‎. ‎Atapour
collection DOAJ
description Let $D=(V,A)$ be a finite simple directed graph‎. ‎A‎ ‎function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus‎ ‎dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge‎ ‎1$ for each vertex $v\in V$‎. ‎The twin minus domination number of‎ ‎$D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbox{ is a twin minus‎ ‎dominating function of }‎ ‎D\}$‎. ‎In this paper‎, ‎we initiate the study of twin minus‎ ‎domination numbers in digraphs and present some lower bounds for‎ ‎$\gamma_{-}^*(D)$ in terms of the order‎, ‎size and maximum and‎ ‎minimum in-degrees and out-degrees.
first_indexed 2024-12-18T14:52:38Z
format Article
id doaj.art-546d14bd0d6e4aee8b444b41e71cf5ef
institution Directory Open Access Journal
issn 2538-2128
2538-2136
language English
last_indexed 2024-12-18T14:52:38Z
publishDate 2016-06-01
publisher Azarbaijan Shahide Madani University
record_format Article
series Communications in Combinatorics and Optimization
spelling doaj.art-546d14bd0d6e4aee8b444b41e71cf5ef2022-12-21T21:04:07ZengAzarbaijan Shahide Madani UniversityCommunications in Combinatorics and Optimization2538-21282538-21362016-06-011214916410.22049/CCO.2016.13575Twin minus domination numbers in directed graphsM‎. ‎Atapour0A‎. ‎Khodkar1Dept‎. ‎of Mathematics‎, ‎Faculty of basic sciences‎, ‎University of Bonab‎, ‎Bonab‎, ‎Iran Dept‎. ‎of Mathematics‎, ‎University of West Georgia‎, ‎Carrollton‎, ‎GA 30118‎, ‎USALet $D=(V,A)$ be a finite simple directed graph‎. ‎A‎ ‎function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus‎ ‎dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge‎ ‎1$ for each vertex $v\in V$‎. ‎The twin minus domination number of‎ ‎$D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbox{ is a twin minus‎ ‎dominating function of }‎ ‎D\}$‎. ‎In this paper‎, ‎we initiate the study of twin minus‎ ‎domination numbers in digraphs and present some lower bounds for‎ ‎$\gamma_{-}^*(D)$ in terms of the order‎, ‎size and maximum and‎ ‎minimum in-degrees and out-degrees.http://comb-opt.azaruniv.ac.ir/article_13575.htmlTwin domination in digraphs‎‎minus domination in graphs‎ ‎twin minus domination in digraphs
spellingShingle M‎. ‎Atapour
A‎. ‎Khodkar
Twin minus domination numbers in directed graphs
Communications in Combinatorics and Optimization
Twin domination in digraphs‎
‎minus domination in graphs
‎ ‎twin minus domination in digraphs
title Twin minus domination numbers in directed graphs
title_full Twin minus domination numbers in directed graphs
title_fullStr Twin minus domination numbers in directed graphs
title_full_unstemmed Twin minus domination numbers in directed graphs
title_short Twin minus domination numbers in directed graphs
title_sort twin minus domination numbers in directed graphs
topic Twin domination in digraphs‎
‎minus domination in graphs
‎ ‎twin minus domination in digraphs
url http://comb-opt.azaruniv.ac.ir/article_13575.html
work_keys_str_mv AT matapour twinminusdominationnumbersindirectedgraphs
AT akhodkar twinminusdominationnumbersindirectedgraphs