Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially int...

Full description

Bibliographic Details
Main Authors: Tomislav Resetar, Koen De Munck, Luc Haspeslagh, Maarten Rosmeulen, Andreas Süss, Robert Puers, Chris Van Hoof
Format: Article
Language:English
Published: MDPI AG 2016-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/8/1294
Description
Summary:This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under −32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.
ISSN:1424-8220