c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3

Summary: Reprogramming of glucose metabolism is a key event in tumorigenesis and progression. Here, we show that active c-Src stimulates glycolysis by phosphorylating (Tyr194) and activating PFKFB3, a key enzyme that boosts glycolysis by producing fructose-2,6-bisphosphate and activating PFK1. Incre...

Full description

Bibliographic Details
Main Authors: Huanhuan Ma, Jia Zhang, Lin Zhou, Shixiong Wen, Hsiang-Yu Tang, Bin Jiang, Fengqiong Zhang, Muhammad Suleman, Dachao Sun, Ai Chen, Wentao Zhao, Furong Lin, Ming-Tong Tsau, Lu-Min Shih, Changchuan Xie, Xiaotong Li, Donghai Lin, Li-Man Hung, Mei-Ling Cheng, Qinxi Li
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S221112472030303X
Description
Summary:Summary: Reprogramming of glucose metabolism is a key event in tumorigenesis and progression. Here, we show that active c-Src stimulates glycolysis by phosphorylating (Tyr194) and activating PFKFB3, a key enzyme that boosts glycolysis by producing fructose-2,6-bisphosphate and activating PFK1. Increased glycolysis intermediates replenish non-oxidative pentose phosphate pathway (PPP) and serine pathway for biosynthesis of cancer cells. PFKFB3 knockout (KO) cells and their counterpart reconstituted with PFKFB3-Y194F show comparably impaired abilities for proliferation, migration, and xenograft formation. Furthermore, PFKFB3-Y194F knockin mice show impaired glycolysis and, mating of these mice with APCmin/+ mice attenuates spontaneous colon cancer formation in APCmin/+ mice. In summary, we identify a specific mechanism by which c-Src mediates glucose metabolism to meet cancer cells’ requirements for maximal biosynthesis and proliferation. The PFKFB3-Tyr194 phosphorylation level highly correlates with c-Src activity in clinical tumor samples, indicating its potential as an evaluation for tumor prognosis. : Ma et al. identify a mechanism of c-Src in promoting tumorigenesis and progression by phosphorylating and activating PFKFB3, an indispensable activator of the rate-limiting enzyme PFK1. PFKFB3 activation further stimulates glycolysis that provides precursors for biosynthesis of proliferating tumor cells.
ISSN:2211-1247