Liver Tumor Computed Tomography Image Segmentation Based on an Improved U-Net Model
An automated segmentation method for computed tomography (CT) images of liver tumors is an urgent clinical need. Tumor areas within liver cancer images are easily missed as they are small and have unclear borders. To address these issues, an improved liver tumor segmentation method based on U-Net is...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/13/20/11283 |
Summary: | An automated segmentation method for computed tomography (CT) images of liver tumors is an urgent clinical need. Tumor areas within liver cancer images are easily missed as they are small and have unclear borders. To address these issues, an improved liver tumor segmentation method based on U-Net is proposed. This involves incorporating attention mechanisms into the U-Net’s skip connections, giving higher weights to important regions. Through dynamically adjusting the attention recognition characteristics, the method achieves accurate localization that is focused on and discriminates target regions. Testing using the LiTS (liver tumor segmentation) public dataset resulted in a Dice similarity coefficient of 0.69. The experiments demonstrated that this method can accurately segment liver tumors. |
---|---|
ISSN: | 2076-3417 |