4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients

Background/Aims: Increased production of multiple pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, plays an essential pathogenic role in the progression of systemic lupus erythematosus (SLE). Recent studies have characterized itaconate as a novel an...

Full description

Bibliographic Details
Main Authors: Chun Tang, Xiaohua Wang, Yingying Xie, Xiaoyan Cai, Na Yu, Yudan Hu, Zhihua Zheng
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2018-11-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:https://www.karger.com/Article/FullText/495400
Description
Summary:Background/Aims: Increased production of multiple pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, plays an essential pathogenic role in the progression of systemic lupus erythematosus (SLE). Recent studies have characterized itaconate as a novel and potent nuclear-factor-E2-related factor 2 (Nrf2) activator that activates Nrf2 signaling by alkylating cysteine residues on Keap1 (Kelch-like ECH-associated protein 1). Methods: THP-1 human macrophages and peripheral blood mononuclear cells (PBMCs) of SLE patients were treated with 4-octyl itaconate (OI). Nrf2 signaling activation was tested by qPCR assay and western blotting. mRNA expression and the production of multiple pro-inflammatory cytokines were tested by qPCR and enzyme-linked immunosorbent assays, respectively. Nuclear factor (NF)-κB activation was tested by the p65 DNA-binding assay. Results: We demonstrated that OI, the cell-permeable derivative of itaconate, induced Keap1-Nrf2 dissociation, Nrf2 protein accumulation, and nuclear translocation, which enabled the transcription and expression of multiple Nrf2-dependentantioxidant enzymes (heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase modifier subunit) in THP-1 human macrophages. OI also induced significant Nrf2 activation in SLE patient-derived PBMCs. OI pretreatment inhibited mRNA expression and the production of multiple pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in SLE patient-derived PBMCs and lipopolysaccharide (LPS)-activated THP-1 cells. OI potently inhibited NF-κB activation in SLE patient-derived PBMCs and LPS-activated THP-1 cells. Importantly, Nrf2 silencing (by targeted short hairpin RNA) or knockout (by CRISPR/Cas9 gene-editing method) almost abolished OI-induced anti-oxidant and anti-inflammatory actions in SLE patient-derived PBMCs and LPS-activated THP-1 cells. Conclusion: OI activates Nrf2 signaling to inhibit the production of pro-inflammatory cytokines in human macrophages and SLE patient-derived PBMCs. OI and itaconate could have important therapeutic value for the treatment of SLE.
ISSN:1015-8987
1421-9778