A Novel Method to Mitigate the Multipath Error for BDS-2 Dam Deformation Monitoring

The multipath effect on carrier-phase observations is related to the observational environment of the station, and cannot be eliminated or attenuated by the differential method. In the actual dam environment of deformation monitoring, multipath is very complicated. It is the main error source of BDS...

Full description

Bibliographic Details
Main Authors: Xuan Zou, Zhiyuan Li, Yangyang Li, Yawei Wang, Weiming Tang, Chenlong Deng, Jianhui Cui, Ruinan Fu
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/9/1787
Description
Summary:The multipath effect on carrier-phase observations is related to the observational environment of the station, and cannot be eliminated or attenuated by the differential method. In the actual dam environment of deformation monitoring, multipath is very complicated. It is the main error source of BDS-2 for high precision data processing. In this paper, a new method called the multi-point hemispherical grid model (MHGM) is studied and evaluated. This method uses the hemispheric grid model to attenuate the influence of multipath errors. The effectiveness and improvement of the new method with respect to the popular sidereal filter (SF) method were assessed and verified by the actual dam monitoring data with only the BDS-2. The MHGM and SF approach calculates the multipath corrections from multi-days historical data, and then corrects the multipath error from the observations on the day of interest. Compared with the SF method, the MHGM can also effectively provide a graphical display of multipath error interference around the stations, which matches the surrounding observation environment. The results show that the double-differenced (DD) residuals of the MHGM for GEO/IGSO and MEO satellites are slightly better than those of SF, but the RMS of MHGM for GEO/IGSO+MEO DD residuals is improved by about 17.0%. The performance of the MHGM method for different satellite constellations is consistent and not affected by the different orbital repeat times, which could solve the “zero mean” assumption problem of the SF method. Meanwhile, the RMS of static with a 2 h interval and kinematic positioning errors of the MHGM method in the horizontal and vertical direction can be up to 1.7, 3.6 and 2.4, 8.1 mm, respectively. The MHGM model could avoid the multipath reference problem caused by different orbital repetition periods, making it more suitable for the combined multipath modeling of BDS-2 and BDS-3.
ISSN:2072-4292