Dual active-set algorithm for optimal 3-monotone regression

The paper considers a shape-constrained optimization problem of constructing monotone regression which has gained much attention over the recent years. This paper presents the results of constructing the nonlinear regression with $3$-monotone constraints. Monotone regression of high orders can be ap...

Full description

Bibliographic Details
Main Authors: Gudkov, Alexandr A., Sidorov, Sergei Petrovich, Spiridonov, Kirill A.
Format: Article
Language:English
Published: Saratov State University 2022-05-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/216-223-gudkov_et_al.pdf
_version_ 1818242970087849984
author Gudkov, Alexandr A.
Sidorov, Sergei Petrovich
Spiridonov, Kirill A.
author_facet Gudkov, Alexandr A.
Sidorov, Sergei Petrovich
Spiridonov, Kirill A.
author_sort Gudkov, Alexandr A.
collection DOAJ
description The paper considers a shape-constrained optimization problem of constructing monotone regression which has gained much attention over the recent years. This paper presents the results of constructing the nonlinear regression with $3$-monotone constraints. Monotone regression of high orders can be applied in many fields, including non-parametric mathematical statistics and empirical data smoothing. In this paper, an iterative algorithm is proposed for constructing a sparse $3$-monotone regression, i.e. for finding a $3$-monotone vector with the lowest square error of approximation to a given (not necessarily $3$-monotone) vector. The problem can be written as a convex programming problem with linear constraints. It is proved that the proposed dual active-set algorithm has polynomial complexity and obtains the optimal solution.
first_indexed 2024-12-12T13:53:41Z
format Article
id doaj.art-548cfa405f5347fe99ee96416dbc96ba
institution Directory Open Access Journal
issn 1816-9791
2541-9005
language English
last_indexed 2024-12-12T13:53:41Z
publishDate 2022-05-01
publisher Saratov State University
record_format Article
series Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
spelling doaj.art-548cfa405f5347fe99ee96416dbc96ba2022-12-22T00:22:30ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052022-05-0122221622310.18500/1816-9791-2022-22-2-216-223Dual active-set algorithm for optimal 3-monotone regressionGudkov, Alexandr A.0Sidorov, Sergei Petrovich1Spiridonov, Kirill A.2Saratov State University, Russia, 410026, Saratov, Astrahanskaya str., 83Saratov State University, Russia, 410026, Saratov, Astrahanskaya str., 83Saratov State University, Russia, 410026, Saratov, Astrahanskaya str., 83The paper considers a shape-constrained optimization problem of constructing monotone regression which has gained much attention over the recent years. This paper presents the results of constructing the nonlinear regression with $3$-monotone constraints. Monotone regression of high orders can be applied in many fields, including non-parametric mathematical statistics and empirical data smoothing. In this paper, an iterative algorithm is proposed for constructing a sparse $3$-monotone regression, i.e. for finding a $3$-monotone vector with the lowest square error of approximation to a given (not necessarily $3$-monotone) vector. The problem can be written as a convex programming problem with linear constraints. It is proved that the proposed dual active-set algorithm has polynomial complexity and obtains the optimal solution.https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/216-223-gudkov_et_al.pdfdual algorithmisotonic regressionmonotone regressionk-monotone regressionconvex regression
spellingShingle Gudkov, Alexandr A.
Sidorov, Sergei Petrovich
Spiridonov, Kirill A.
Dual active-set algorithm for optimal 3-monotone regression
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
dual algorithm
isotonic regression
monotone regression
k-monotone regression
convex regression
title Dual active-set algorithm for optimal 3-monotone regression
title_full Dual active-set algorithm for optimal 3-monotone regression
title_fullStr Dual active-set algorithm for optimal 3-monotone regression
title_full_unstemmed Dual active-set algorithm for optimal 3-monotone regression
title_short Dual active-set algorithm for optimal 3-monotone regression
title_sort dual active set algorithm for optimal 3 monotone regression
topic dual algorithm
isotonic regression
monotone regression
k-monotone regression
convex regression
url https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/216-223-gudkov_et_al.pdf
work_keys_str_mv AT gudkovalexandra dualactivesetalgorithmforoptimal3monotoneregression
AT sidorovsergeipetrovich dualactivesetalgorithmforoptimal3monotoneregression
AT spiridonovkirilla dualactivesetalgorithmforoptimal3monotoneregression