Summary: | The purpose of this study is to describe a methodology for assessing the geotechnical stability of agricultural facilities, enabling prediction of the state of the geotechnical system, taking into account the influence of external factors and combinations of reactions of the geotechnical system under study. According to the methodology, the heterogeneous geotechnical monitoring data obtained are used in an adjusted geotechnical system model, allowing a bifurcation analysis to be carried out. The bifurcation analysis determines critical values of influencing factors, and the limits of stability of the geotechnical system studied parameters are adjusted. The developed methodology was used to assess and predict the geotechnical stability of agricultural facilities during the processing of geoelectric, resistive acoustic, accelerometric and strain-gauge control data obtained in the period from 2016 to 2021. A feature of the geotechnical system under study is the periodic flooding of the building basement caused by the processes of reclamation and irrigation, leading to changes in the groundwater level. The results show that the permissible calculated elastic limit of the foundation elements (32.2–35.1 MPa) before the loss of stability should be significantly reduced with a change in the water content coefficient (W) of the soil base: at W = 0.15 Eb = 30.7–32.0 MPa; at W = 0.35 Eb = 26.8–28.2 MPa; at W = 0.55 Eb = 24.9–25.3 MPa.
|