Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US

<p>During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5&thinsp;h downwind. In nine flights we...

Full description

Bibliographic Details
Main Authors: L. I. Kleinman, A. J. Sedlacek III, K. Adachi, P. R. Buseck, S. Collier, M. K. Dubey, A. L. Hodshire, E. Lewis, T. B. Onasch, J. R. Pierce, J. Shilling, S. R. Springston, J. Wang, Q. Zhang, S. Zhou, R. J. Yokelson
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf
_version_ 1818228345458917376
author L. I. Kleinman
A. J. Sedlacek III
K. Adachi
P. R. Buseck
S. Collier
S. Collier
M. K. Dubey
A. L. Hodshire
E. Lewis
T. B. Onasch
J. R. Pierce
J. Shilling
S. R. Springston
J. Wang
J. Wang
Q. Zhang
S. Zhou
S. Zhou
R. J. Yokelson
author_facet L. I. Kleinman
A. J. Sedlacek III
K. Adachi
P. R. Buseck
S. Collier
S. Collier
M. K. Dubey
A. L. Hodshire
E. Lewis
T. B. Onasch
J. R. Pierce
J. Shilling
S. R. Springston
J. Wang
J. Wang
Q. Zhang
S. Zhou
S. Zhou
R. J. Yokelson
author_sort L. I. Kleinman
collection DOAJ
description <p>During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5&thinsp;h downwind. In nine flights we made repeated transects of wildfire plumes at varying downwind distances and could thereby follow the plume's time evolution. On average there was little change in dilution-normalized aerosol mass concentration as a function of downwind distance. This consistency hides a dynamic system in which primary aerosol particles are evaporating and secondary ones condensing. Organic aerosol is oxidized as a result. On all transects more than 90&thinsp;% of aerosol is organic. In freshly emitted smoke aerosol, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00001.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00001.png"/></svg:svg></span></span> is approximately equivalent to <span class="inline-formula">NO<sub>3</sub></span>. After 2&thinsp;h of daytime aging, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00002.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00002.png"/></svg:svg></span></span> increased and is approximately equivalent to the sum of Cl, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fac0ae929f4b2d8ca7c7776e5fe7ffc7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00003.svg" width="22pt" height="16pt" src="acp-20-13319-2020-ie00003.png"/></svg:svg></span></span>, and <span class="inline-formula">NO<sub>3</sub></span>. Particle size increased with downwind distance, causing particles to be more efficient scatters. Averaged over nine flights, mass scattering efficiency (MSE) increased in <span class="inline-formula">∼</span> 2&thinsp;h by 56&thinsp;% and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at moving aerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the time evolution of single scatter albedo was controlled by age-dependent scattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2&thinsp;h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observed age dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.</p>
first_indexed 2024-12-12T10:01:14Z
format Article
id doaj.art-5491059ea3d84549953491c872afbec9
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-12T10:01:14Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-5491059ea3d84549953491c872afbec92022-12-22T00:27:59ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120133191334110.5194/acp-20-13319-2020Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western USL. I. Kleinman0A. J. Sedlacek III1K. Adachi2P. R. Buseck3S. Collier4S. Collier5M. K. Dubey6A. L. Hodshire7E. Lewis8T. B. Onasch9J. R. Pierce10J. Shilling11S. R. Springston12J. Wang13J. Wang14Q. Zhang15S. Zhou16S. Zhou17R. J. Yokelson18Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAAtmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, JapanSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ, USADepartment of Environmental Toxicology, University of California, Davis, CA, USAnow at: California Air Resources Board, Sacramento, CA, USAEarth Systems Observations, Los Alamos National Laboratory, Los Alamos, NM, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAAerodyne Research Inc., Billerica, MA, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAnow at: Center for Aerosol Science and Engineering, Washington University, St. Louis, MO, USADepartment of Environmental Toxicology, University of California, Davis, CA, USADepartment of Environmental Toxicology, University of California, Davis, CA, USAnow at: Department of Chemistry, Syracuse University, Syracuse, NY, USADepartment of Chemistry and Biochemistry, University of Montana, Missoula, 59812 MT, USA<p>During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5&thinsp;h downwind. In nine flights we made repeated transects of wildfire plumes at varying downwind distances and could thereby follow the plume's time evolution. On average there was little change in dilution-normalized aerosol mass concentration as a function of downwind distance. This consistency hides a dynamic system in which primary aerosol particles are evaporating and secondary ones condensing. Organic aerosol is oxidized as a result. On all transects more than 90&thinsp;% of aerosol is organic. In freshly emitted smoke aerosol, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00001.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00001.png"/></svg:svg></span></span> is approximately equivalent to <span class="inline-formula">NO<sub>3</sub></span>. After 2&thinsp;h of daytime aging, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00002.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00002.png"/></svg:svg></span></span> increased and is approximately equivalent to the sum of Cl, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fac0ae929f4b2d8ca7c7776e5fe7ffc7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00003.svg" width="22pt" height="16pt" src="acp-20-13319-2020-ie00003.png"/></svg:svg></span></span>, and <span class="inline-formula">NO<sub>3</sub></span>. Particle size increased with downwind distance, causing particles to be more efficient scatters. Averaged over nine flights, mass scattering efficiency (MSE) increased in <span class="inline-formula">∼</span> 2&thinsp;h by 56&thinsp;% and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at moving aerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the time evolution of single scatter albedo was controlled by age-dependent scattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2&thinsp;h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observed age dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.</p>https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf
spellingShingle L. I. Kleinman
A. J. Sedlacek III
K. Adachi
P. R. Buseck
S. Collier
S. Collier
M. K. Dubey
A. L. Hodshire
E. Lewis
T. B. Onasch
J. R. Pierce
J. Shilling
S. R. Springston
J. Wang
J. Wang
Q. Zhang
S. Zhou
S. Zhou
R. J. Yokelson
Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
Atmospheric Chemistry and Physics
title Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
title_full Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
title_fullStr Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
title_full_unstemmed Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
title_short Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
title_sort rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western us
url https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf
work_keys_str_mv AT likleinman rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT ajsedlacekiii rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT kadachi rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT prbuseck rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT scollier rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT scollier rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT mkdubey rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT alhodshire rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT elewis rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT tbonasch rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT jrpierce rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT jshilling rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT srspringston rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT jwang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT jwang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT qzhang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT szhou rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT szhou rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus
AT rjyokelson rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus