Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
<p>During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5 h downwind. In nine flights we...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf |
_version_ | 1818228345458917376 |
---|---|
author | L. I. Kleinman A. J. Sedlacek III K. Adachi P. R. Buseck S. Collier S. Collier M. K. Dubey A. L. Hodshire E. Lewis T. B. Onasch J. R. Pierce J. Shilling S. R. Springston J. Wang J. Wang Q. Zhang S. Zhou S. Zhou R. J. Yokelson |
author_facet | L. I. Kleinman A. J. Sedlacek III K. Adachi P. R. Buseck S. Collier S. Collier M. K. Dubey A. L. Hodshire E. Lewis T. B. Onasch J. R. Pierce J. Shilling S. R. Springston J. Wang J. Wang Q. Zhang S. Zhou S. Zhou R. J. Yokelson |
author_sort | L. I. Kleinman |
collection | DOAJ |
description | <p>During the first phase of the Biomass Burn Operational Project (BBOP) field
campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used
to follow the time evolution of wildfire smoke from near the point of
emission to locations 2–3.5 h downwind. In nine flights we made
repeated transects of wildfire plumes at varying downwind distances and
could thereby follow the plume's time evolution. On average there was little
change in dilution-normalized aerosol mass concentration as a function of
downwind distance. This consistency hides a dynamic system in which primary
aerosol particles are evaporating and secondary ones condensing. Organic
aerosol is oxidized as a result. On all transects more than 90 % of
aerosol is organic. In freshly emitted smoke aerosol, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00001.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00001.png"/></svg:svg></span></span> is
approximately equivalent to <span class="inline-formula">NO<sub>3</sub></span>. After 2 h of daytime aging, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00002.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00002.png"/></svg:svg></span></span> increased and is approximately equivalent to
the sum of Cl, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fac0ae929f4b2d8ca7c7776e5fe7ffc7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00003.svg" width="22pt" height="16pt" src="acp-20-13319-2020-ie00003.png"/></svg:svg></span></span>, and <span class="inline-formula">NO<sub>3</sub></span>. Particle size increased with downwind distance,
causing particles to be more efficient scatters. Averaged over nine flights,
mass scattering efficiency (MSE) increased in <span class="inline-formula">∼</span> 2 h by 56 % and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at moving
aerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the time
evolution of single scatter albedo was controlled by age-dependent
scattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2 h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observed
age dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.</p> |
first_indexed | 2024-12-12T10:01:14Z |
format | Article |
id | doaj.art-5491059ea3d84549953491c872afbec9 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-12T10:01:14Z |
publishDate | 2020-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-5491059ea3d84549953491c872afbec92022-12-22T00:27:59ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120133191334110.5194/acp-20-13319-2020Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western USL. I. Kleinman0A. J. Sedlacek III1K. Adachi2P. R. Buseck3S. Collier4S. Collier5M. K. Dubey6A. L. Hodshire7E. Lewis8T. B. Onasch9J. R. Pierce10J. Shilling11S. R. Springston12J. Wang13J. Wang14Q. Zhang15S. Zhou16S. Zhou17R. J. Yokelson18Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAAtmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, JapanSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ, USADepartment of Environmental Toxicology, University of California, Davis, CA, USAnow at: California Air Resources Board, Sacramento, CA, USAEarth Systems Observations, Los Alamos National Laboratory, Los Alamos, NM, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAAerodyne Research Inc., Billerica, MA, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USAnow at: Center for Aerosol Science and Engineering, Washington University, St. Louis, MO, USADepartment of Environmental Toxicology, University of California, Davis, CA, USADepartment of Environmental Toxicology, University of California, Davis, CA, USAnow at: Department of Chemistry, Syracuse University, Syracuse, NY, USADepartment of Chemistry and Biochemistry, University of Montana, Missoula, 59812 MT, USA<p>During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5 h downwind. In nine flights we made repeated transects of wildfire plumes at varying downwind distances and could thereby follow the plume's time evolution. On average there was little change in dilution-normalized aerosol mass concentration as a function of downwind distance. This consistency hides a dynamic system in which primary aerosol particles are evaporating and secondary ones condensing. Organic aerosol is oxidized as a result. On all transects more than 90 % of aerosol is organic. In freshly emitted smoke aerosol, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00001.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00001.png"/></svg:svg></span></span> is approximately equivalent to <span class="inline-formula">NO<sub>3</sub></span>. After 2 h of daytime aging, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00002.svg" width="24pt" height="15pt" src="acp-20-13319-2020-ie00002.png"/></svg:svg></span></span> increased and is approximately equivalent to the sum of Cl, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fac0ae929f4b2d8ca7c7776e5fe7ffc7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13319-2020-ie00003.svg" width="22pt" height="16pt" src="acp-20-13319-2020-ie00003.png"/></svg:svg></span></span>, and <span class="inline-formula">NO<sub>3</sub></span>. Particle size increased with downwind distance, causing particles to be more efficient scatters. Averaged over nine flights, mass scattering efficiency (MSE) increased in <span class="inline-formula">∼</span> 2 h by 56 % and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at moving aerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the time evolution of single scatter albedo was controlled by age-dependent scattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2 h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observed age dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.</p>https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf |
spellingShingle | L. I. Kleinman A. J. Sedlacek III K. Adachi P. R. Buseck S. Collier S. Collier M. K. Dubey A. L. Hodshire E. Lewis T. B. Onasch J. R. Pierce J. Shilling S. R. Springston J. Wang J. Wang Q. Zhang S. Zhou S. Zhou R. J. Yokelson Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US Atmospheric Chemistry and Physics |
title | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US |
title_full | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US |
title_fullStr | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US |
title_full_unstemmed | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US |
title_short | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US |
title_sort | rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western us |
url | https://acp.copernicus.org/articles/20/13319/2020/acp-20-13319-2020.pdf |
work_keys_str_mv | AT likleinman rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT ajsedlacekiii rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT kadachi rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT prbuseck rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT scollier rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT scollier rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT mkdubey rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT alhodshire rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT elewis rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT tbonasch rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT jrpierce rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT jshilling rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT srspringston rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT jwang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT jwang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT qzhang rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT szhou rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT szhou rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus AT rjyokelson rapidevolutionofaerosolparticlesandtheiropticalpropertiesdownwindofwildfiresinthewesternus |