Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement
Applications of nanophotonic tweezers have been limited by the low trapping force. Here, the authors present enhanced force generation in a nanophotonic standing-wave array trap by integrating a critically-coupled resonator design and demonstrate common single-molecule experiments.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-27709-3 |
Summary: | Applications of nanophotonic tweezers have been limited by the low trapping force. Here, the authors present enhanced force generation in a nanophotonic standing-wave array trap by integrating a critically-coupled resonator design and demonstrate common single-molecule experiments. |
---|---|
ISSN: | 2041-1723 |