Iron Carbon Catalyst Initiated the Generation of Active Free Radicals without Oxidants for Decontamination of Methylene Blue from Waters

In conventional oxidation technologies for treatment of contaminated waters, secondary pollution of the aqueous environment often occurs because of the additional oxidants generated during the process. To avoid this problem, Fe/NG catalyst composites without additives were developed in this study fo...

Full description

Bibliographic Details
Main Authors: Yan Liu, Guangyu Xie, Guoyu Li, Jingye Cui, Chuang Li, Hao Xu, Yating Lu, Qi Jin, Daixi Zhou, Xinjiang Hu
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/12/4/388
Description
Summary:In conventional oxidation technologies for treatment of contaminated waters, secondary pollution of the aqueous environment often occurs because of the additional oxidants generated during the process. To avoid this problem, Fe/NG catalyst composites without additives were developed in this study for decontamination of methylene blue (MB) from waters. The Fe/NG catalyst, composed of carbon nitride and iron chloride (FeCl<sub>3</sub>·6H<sub>2</sub>O), was prepared by high temperature pyrolysis. It is an exceptionally efficient, recoverable, and sustainable catalyst for degradation of organic matter. The morphological characteristics, chemical structure, and surface properties of the catalyst composites were investigated. The catalyst exhibited high MB removal efficiency (100%) within 30 min under ambient temperature and dark conditions. The experiments indicated that an MB degradation effect was also applicable under most acid–base conditions (pH = 2–10). The characterization results using electron spin resonance and analysis of intermediate products demonstrated that free radicals such as ·OH and ·O<sub>2</sub><sup>−</sup> were produced from the Fe/NG composites in the heterogeneous system, which resulted in the high MB degradation efficiency. Moreover, the catalysis reaction generated reducing substances, triggering iron carbon micro-electrolysis to spontaneously develop a microcurrent, which assisted the degradation of MB. This study demonstrates the feasibility of Fe/NG catalysts that spontaneously generate active species for degrading pollutants in an aqueous environment at normal temperature, providing an attractive approach for treating organic-contaminated waters.
ISSN:2073-4344