Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review
Nanoparticle research and development have brought significant breakthroughs in many areas of basic and applied sciences. However, efficiently collecting nanoparticles in large quantities in pure and natural systems is a major challenge in nanoscience. This review article has focused on experimental...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-06-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-666X/4/2/215 |
_version_ | 1818365632341606400 |
---|---|
author | Ming K. Wang Ya N. Wang Yu M. Chou Yue M. Chen Tsung M. Tsao |
author_facet | Ming K. Wang Ya N. Wang Yu M. Chou Yue M. Chen Tsung M. Tsao |
author_sort | Ming K. Wang |
collection | DOAJ |
description | Nanoparticle research and development have brought significant breakthroughs in many areas of basic and applied sciences. However, efficiently collecting nanoparticles in large quantities in pure and natural systems is a major challenge in nanoscience. This review article has focused on experimental investigation and implications of nanoparticles in soil, clay, geological and environmental sciences. An automated ultrafiltration device (AUD) apparatus was used to demonstrate efficient collection and separation of nanoparticles in highly weathering red soils, black soils, and gouge of earthquake fault, as well as zeolite. The kaolinite, illite, goethite, and hematite were identified in highly weathering red soils. Transmission electron microscopic (TEM) images showed the presence of hematite nanoparticles on the surface coating of kaolinite nanoparticles and aggregated hematite nanoparticles overlapping the edge of a kaolinite flake in a size range from 4 to 7 nm. The maximum crystal violet (CV) and methylene blue (MB) adsorption amount of smectite nanoparticles (<100 nm) separated by black soils were about two to three times higher than those of bulk sample (<2000 nm). The smectite nanoparticles adsorb both CV and MB dyes efficiently and could be employed as a low-cost alternative to remove cationic dyes in wastewater treatment. Quartz grain of <50 nm was found in the gouge of fault by X-ray diffraction (XRD) analysis and TEM observation. Separated quartz could be used as the index mineral associated with earthquake fracture and the finest grain size was around 25 nm. Comparing the various particle-size fractions of zeolite showed significant differences in surface area, Si to Al molar ratio, morphology, crystallinity, framework structure, and surface atomic structure of nanoparticles from those of the bulk sample prior to particle-size fractionations. The AUD apparatus has the characteristics of automation, easy operation, and high efficiency in the separation of nanoparticles and would, thus, facilitate future nanoparticle research and developments in basic and applied sciences. |
first_indexed | 2024-12-13T22:23:21Z |
format | Article |
id | doaj.art-54ada8e4097942c49cdf92d5e22205f5 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-12-13T22:23:21Z |
publishDate | 2013-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-54ada8e4097942c49cdf92d5e22205f52022-12-21T23:29:18ZengMDPI AGMicromachines2072-666X2013-06-014221523110.3390/mi4020215Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A ReviewMing K. WangYa N. WangYu M. ChouYue M. ChenTsung M. TsaoNanoparticle research and development have brought significant breakthroughs in many areas of basic and applied sciences. However, efficiently collecting nanoparticles in large quantities in pure and natural systems is a major challenge in nanoscience. This review article has focused on experimental investigation and implications of nanoparticles in soil, clay, geological and environmental sciences. An automated ultrafiltration device (AUD) apparatus was used to demonstrate efficient collection and separation of nanoparticles in highly weathering red soils, black soils, and gouge of earthquake fault, as well as zeolite. The kaolinite, illite, goethite, and hematite were identified in highly weathering red soils. Transmission electron microscopic (TEM) images showed the presence of hematite nanoparticles on the surface coating of kaolinite nanoparticles and aggregated hematite nanoparticles overlapping the edge of a kaolinite flake in a size range from 4 to 7 nm. The maximum crystal violet (CV) and methylene blue (MB) adsorption amount of smectite nanoparticles (<100 nm) separated by black soils were about two to three times higher than those of bulk sample (<2000 nm). The smectite nanoparticles adsorb both CV and MB dyes efficiently and could be employed as a low-cost alternative to remove cationic dyes in wastewater treatment. Quartz grain of <50 nm was found in the gouge of fault by X-ray diffraction (XRD) analysis and TEM observation. Separated quartz could be used as the index mineral associated with earthquake fracture and the finest grain size was around 25 nm. Comparing the various particle-size fractions of zeolite showed significant differences in surface area, Si to Al molar ratio, morphology, crystallinity, framework structure, and surface atomic structure of nanoparticles from those of the bulk sample prior to particle-size fractionations. The AUD apparatus has the characteristics of automation, easy operation, and high efficiency in the separation of nanoparticles and would, thus, facilitate future nanoparticle research and developments in basic and applied sciences.http://www.mdpi.com/2072-666X/4/2/215black soilhematitekaolinitenanoparticlered soilsmectite |
spellingShingle | Ming K. Wang Ya N. Wang Yu M. Chou Yue M. Chen Tsung M. Tsao Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review Micromachines black soil hematite kaolinite nanoparticle red soil smectite |
title | Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review |
title_full | Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review |
title_fullStr | Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review |
title_full_unstemmed | Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review |
title_short | Automated Ultrafiltration Device for Environmental Nanoparticle Research and Implications: A Review |
title_sort | automated ultrafiltration device for environmental nanoparticle research and implications a review |
topic | black soil hematite kaolinite nanoparticle red soil smectite |
url | http://www.mdpi.com/2072-666X/4/2/215 |
work_keys_str_mv | AT mingkwang automatedultrafiltrationdeviceforenvironmentalnanoparticleresearchandimplicationsareview AT yanwang automatedultrafiltrationdeviceforenvironmentalnanoparticleresearchandimplicationsareview AT yumchou automatedultrafiltrationdeviceforenvironmentalnanoparticleresearchandimplicationsareview AT yuemchen automatedultrafiltrationdeviceforenvironmentalnanoparticleresearchandimplicationsareview AT tsungmtsao automatedultrafiltrationdeviceforenvironmentalnanoparticleresearchandimplicationsareview |