Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
In this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/19...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/12/3/366 |
_version_ | 1827659572995686400 |
---|---|
author | Justine Sageka Nyarige Alexander T. Paradzah Tjaart P. J. Krüger Mmantsae Diale |
author_facet | Justine Sageka Nyarige Alexander T. Paradzah Tjaart P. J. Krüger Mmantsae Diale |
author_sort | Justine Sageka Nyarige |
collection | DOAJ |
description | In this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn), silver-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag) and zinc/silver co-doped hematite (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag) nanostructures were synthesized by spray pyrolysis. The synthesized nanostructures were used as photoanodes in the photoelectrochemical (PEC) cell for water-splitting. A significant improvement in photocurrent density of 0.470 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> at 1.23 V vs. reversible hydrogen electrode (RHE) was recorded for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn and pristine hematite samples produced photocurrent densities of 0.270, 0.160, and 0.033 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively. Mott–Schottky analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag had the highest free carrier density of 8.75 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, while pristine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag had carrier densities of 1.57 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>19</mn></msup></semantics></math></inline-formula>, 5.63 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula>, and 6.91 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, respectively. Electrochemical impedance spectra revealed a low impedance for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. X-ray diffraction confirmed the rhombohedral corundum structure of hematite. Scanning electron microscopy micrographs, on the other hand, showed uniformly distributed grains with an average size of <30 nm. The films were absorbing in the visible region with an absorption onset ranging from 652 to 590 nm, corresponding to a bandgap range of 1.9 to 2.1 eV. Global analysis of ultrafast transient absorption spectroscopy data revealed four decay lifetimes, with a reduction in the electron-hole recombination rate of the doped samples on a timescale of tens of picoseconds. |
first_indexed | 2024-03-09T23:25:18Z |
format | Article |
id | doaj.art-54b51b13c8f44024b7d8ce36d5cd7a78 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-09T23:25:18Z |
publishDate | 2022-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-54b51b13c8f44024b7d8ce36d5cd7a782023-11-23T17:19:37ZengMDPI AGNanomaterials2079-49912022-01-0112336610.3390/nano12030366Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water SplittingJustine Sageka Nyarige0Alexander T. Paradzah1Tjaart P. J. Krüger2Mmantsae Diale3Department of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaIn this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn), silver-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag) and zinc/silver co-doped hematite (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag) nanostructures were synthesized by spray pyrolysis. The synthesized nanostructures were used as photoanodes in the photoelectrochemical (PEC) cell for water-splitting. A significant improvement in photocurrent density of 0.470 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> at 1.23 V vs. reversible hydrogen electrode (RHE) was recorded for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn and pristine hematite samples produced photocurrent densities of 0.270, 0.160, and 0.033 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively. Mott–Schottky analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag had the highest free carrier density of 8.75 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, while pristine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag had carrier densities of 1.57 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>19</mn></msup></semantics></math></inline-formula>, 5.63 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula>, and 6.91 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, respectively. Electrochemical impedance spectra revealed a low impedance for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. X-ray diffraction confirmed the rhombohedral corundum structure of hematite. Scanning electron microscopy micrographs, on the other hand, showed uniformly distributed grains with an average size of <30 nm. The films were absorbing in the visible region with an absorption onset ranging from 652 to 590 nm, corresponding to a bandgap range of 1.9 to 2.1 eV. Global analysis of ultrafast transient absorption spectroscopy data revealed four decay lifetimes, with a reduction in the electron-hole recombination rate of the doped samples on a timescale of tens of picoseconds.https://www.mdpi.com/2079-4991/12/3/366hematite nanoparticlesdopingchemical spray pyrolysisphotocurrentwater-splittingtransient absorption spectroscopy |
spellingShingle | Justine Sageka Nyarige Alexander T. Paradzah Tjaart P. J. Krüger Mmantsae Diale Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting Nanomaterials hematite nanoparticles doping chemical spray pyrolysis photocurrent water-splitting transient absorption spectroscopy |
title | Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting |
title_full | Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting |
title_fullStr | Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting |
title_full_unstemmed | Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting |
title_short | Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting |
title_sort | mono doped and co doped nanostructured hematite for improved photoelectrochemical water splitting |
topic | hematite nanoparticles doping chemical spray pyrolysis photocurrent water-splitting transient absorption spectroscopy |
url | https://www.mdpi.com/2079-4991/12/3/366 |
work_keys_str_mv | AT justinesagekanyarige monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting AT alexandertparadzah monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting AT tjaartpjkruger monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting AT mmantsaediale monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting |