Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting

In this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/19...

Full description

Bibliographic Details
Main Authors: Justine Sageka Nyarige, Alexander T. Paradzah, Tjaart P. J. Krüger, Mmantsae Diale
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/3/366
_version_ 1827659572995686400
author Justine Sageka Nyarige
Alexander T. Paradzah
Tjaart P. J. Krüger
Mmantsae Diale
author_facet Justine Sageka Nyarige
Alexander T. Paradzah
Tjaart P. J. Krüger
Mmantsae Diale
author_sort Justine Sageka Nyarige
collection DOAJ
description In this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn), silver-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag) and zinc/silver co-doped hematite (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag) nanostructures were synthesized by spray pyrolysis. The synthesized nanostructures were used as photoanodes in the photoelectrochemical (PEC) cell for water-splitting. A significant improvement in photocurrent density of 0.470 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> at 1.23 V vs. reversible hydrogen electrode (RHE) was recorded for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn and pristine hematite samples produced photocurrent densities of 0.270, 0.160, and 0.033 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively. Mott–Schottky analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag had the highest free carrier density of 8.75 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, while pristine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag had carrier densities of 1.57 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>19</mn></msup></semantics></math></inline-formula>, 5.63 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula>, and 6.91 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, respectively. Electrochemical impedance spectra revealed a low impedance for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. X-ray diffraction confirmed the rhombohedral corundum structure of hematite. Scanning electron microscopy micrographs, on the other hand, showed uniformly distributed grains with an average size of <30 nm. The films were absorbing in the visible region with an absorption onset ranging from 652 to 590 nm, corresponding to a bandgap range of 1.9 to 2.1 eV. Global analysis of ultrafast transient absorption spectroscopy data revealed four decay lifetimes, with a reduction in the electron-hole recombination rate of the doped samples on a timescale of tens of picoseconds.
first_indexed 2024-03-09T23:25:18Z
format Article
id doaj.art-54b51b13c8f44024b7d8ce36d5cd7a78
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T23:25:18Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-54b51b13c8f44024b7d8ce36d5cd7a782023-11-23T17:19:37ZengMDPI AGNanomaterials2079-49912022-01-0112336610.3390/nano12030366Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water SplittingJustine Sageka Nyarige0Alexander T. Paradzah1Tjaart P. J. Krüger2Mmantsae Diale3Department of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaDepartment of Physics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South AfricaIn this study, zinc-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn), silver-doped (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag) and zinc/silver co-doped hematite (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag) nanostructures were synthesized by spray pyrolysis. The synthesized nanostructures were used as photoanodes in the photoelectrochemical (PEC) cell for water-splitting. A significant improvement in photocurrent density of 0.470 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> at 1.23 V vs. reversible hydrogen electrode (RHE) was recorded for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn and pristine hematite samples produced photocurrent densities of 0.270, 0.160, and 0.033 mAcm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively. Mott–Schottky analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag had the highest free carrier density of 8.75 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, while pristine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Ag had carrier densities of 1.57 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>19</mn></msup></semantics></math></inline-formula>, 5.63 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula>, and 6.91 × 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>20</mn></msup></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, respectively. Electrochemical impedance spectra revealed a low impedance for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>:Zn/Ag. X-ray diffraction confirmed the rhombohedral corundum structure of hematite. Scanning electron microscopy micrographs, on the other hand, showed uniformly distributed grains with an average size of <30 nm. The films were absorbing in the visible region with an absorption onset ranging from 652 to 590 nm, corresponding to a bandgap range of 1.9 to 2.1 eV. Global analysis of ultrafast transient absorption spectroscopy data revealed four decay lifetimes, with a reduction in the electron-hole recombination rate of the doped samples on a timescale of tens of picoseconds.https://www.mdpi.com/2079-4991/12/3/366hematite nanoparticlesdopingchemical spray pyrolysisphotocurrentwater-splittingtransient absorption spectroscopy
spellingShingle Justine Sageka Nyarige
Alexander T. Paradzah
Tjaart P. J. Krüger
Mmantsae Diale
Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
Nanomaterials
hematite nanoparticles
doping
chemical spray pyrolysis
photocurrent
water-splitting
transient absorption spectroscopy
title Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
title_full Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
title_fullStr Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
title_full_unstemmed Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
title_short Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting
title_sort mono doped and co doped nanostructured hematite for improved photoelectrochemical water splitting
topic hematite nanoparticles
doping
chemical spray pyrolysis
photocurrent
water-splitting
transient absorption spectroscopy
url https://www.mdpi.com/2079-4991/12/3/366
work_keys_str_mv AT justinesagekanyarige monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting
AT alexandertparadzah monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting
AT tjaartpjkruger monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting
AT mmantsaediale monodopedandcodopednanostructuredhematiteforimprovedphotoelectrochemicalwatersplitting