Multivariate generalizations of the Foata-Schützenberger equidistribution

A result of Foata and Schützenberger states that two statistics on permutations, the number of inversions and the inverse major index, have the same distribution on a descent class. We give a multivariate generalization of this property: the sorted vectors of the Lehmer code, of the inverse majcode,...

Full description

Bibliographic Details
Main Authors: Florent Hivert, Jean-Christophe Novelli, Jean-Yves Thibon
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2006-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3511/pdf
Description
Summary:A result of Foata and Schützenberger states that two statistics on permutations, the number of inversions and the inverse major index, have the same distribution on a descent class. We give a multivariate generalization of this property: the sorted vectors of the Lehmer code, of the inverse majcode, and of a new code (the inverse saillance code), have the same distribution on a descent class, and their common multivariate generating function is a flagged ribbon Schur function.
ISSN:1365-8050