Effect of Nb and F Co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material for High-Performance Lithium-Ion Batteries

The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x (x = 0, 0.01, 0.03, 0.05) is prepared by traditional solid-phase method, and the Nb and F ions are successfully doped into Mn and O sites of layered materials Li1.2Mn0.54Co0.13Ni0.13O2, respectively. The incorporating Nb ion in Mn site can effectively restrai...

Full description

Bibliographic Details
Main Authors: Lei Ming, Bao Zhang, Yang Cao, Jia-Feng Zhang, Chun-Hui Wang, Xiao-Wei Wang, Hui Li
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-04-01
Series:Frontiers in Chemistry
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fchem.2018.00076/full
Description
Summary:The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x (x = 0, 0.01, 0.03, 0.05) is prepared by traditional solid-phase method, and the Nb and F ions are successfully doped into Mn and O sites of layered materials Li1.2Mn0.54Co0.13Ni0.13O2, respectively. The incorporating Nb ion in Mn site can effectively restrain the migration of transition metal ions during long-term cycling, and keep the stability of the crystal structure. The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x shows suppressed voltage fade and higher capacity retention of 98.1% after 200 cycles at rate of 1 C. The replacement of O2− by the strongly electronegative F− is beneficial for suppressed the structure change of Li2MnO3 from the eliminating of oxygen in initial charge process. Therefore, the initial coulombic efficiency of doped Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x gets improved, which is higher than that of pure Li1.2Mn0.54Co0.13Ni0.13O2. In addition, the Nb and F co-doping can effectively enhance the transfer of lithium-ion and electrons, and thus improving rate performance.
ISSN:2296-2646