Recovery of Uranium, Thorium, and Other Rare Metals from Eudialyte Concentrate by a Binary Extractant Based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Methyl Trioctylammonium Nitrate

Eudialyte-group minerals are of scientific interest as important concentrators of rare elements (mainly Zr and <i>REE</i>) in agpaitic alkaline rocks and a potential source of <i>REE</i>, Zr, Hf, Nb, and Ta for industrial use. Extraction of uranium(VI), thorium(IV), zirconium...

Full description

Bibliographic Details
Main Authors: Alfiya M. Safiulina, Alexey V. Lizunov, Aleksandr A. Semenov, Dmitriy V. Baulin, Vladimir E. Baulin, Aslan Yu. Tsivadze, Sergey M. Aksenov, Ivan G. Tananaev
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/11/1469
Description
Summary:Eudialyte-group minerals are of scientific interest as important concentrators of rare elements (mainly Zr and <i>REE</i>) in agpaitic alkaline rocks and a potential source of <i>REE</i>, Zr, Hf, Nb, and Ta for industrial use. Extraction of uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III) by a binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyl trioctylammonium nitrate from eudialyte breakdown solutions is studied. Extraction isotherms were obtained and exhaustive extraction was investigated. It is shown that uranium, thorium, hafnium, zirconium, scandium, and titanium are almost completely recovered in two-stage extraction by a mixture of 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane. Quantitative characteristics were compared for uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III). It was shown that the extraction efficiency of the metals by the binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane is much higher in comparison with the commercially available tributyl phosphate.
ISSN:2075-163X