Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy

Intracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson’s disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1–121), composed of two protofibrils that are connected via a densely-packed interface...

Full description

Bibliographic Details
Main Authors: Ricardo Guerrero-Ferreira, Nicholas MI Taylor, Ana-Andreea Arteni, Pratibha Kumari, Daniel Mona, Philippe Ringler, Markus Britschgi, Matthias E Lauer, Ali Makky, Joeri Verasdonck, Roland Riek, Ronald Melki, Beat H Meier, Anja Böckmann, Luc Bousset, Henning Stahlberg
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2019-12-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/48907
Description
Summary:Intracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson’s disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1–121), composed of two protofibrils that are connected via a densely-packed interface formed by residues 50–57 (Guerrero-Ferreira, eLife 218;7:e36402). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.0 Å and 3.4 Å resolution, respectively. These polymorphs show a radically different structure compared to previously reported polymorphs. The new structures have a 10 nm fibril diameter and are composed of two protofilaments which interact via intermolecular salt-bridges between amino acids K45, E57 (polymorph 2a) or E46 (polymorph 2b). The non-amyloid component (NAC) region of alpha-synuclein is fully buried by previously non-described interactions with the N-terminus. A hydrophobic cleft, the location of familial PD mutation sites, and the nature of the protofilament interface now invite to formulate hypotheses about fibril formation, growth and stability.
ISSN:2050-084X