Optimizing sparse fermionic Hamiltonians

We consider the problem of approximating the ground state energy of a fermionic Hamiltonian using a Gaussian state. In sharp contrast to the dense case [1, 2], we prove that strictly $q$-local $\rm {\textit {sparse}}$ fermionic Hamiltonians have a constant Gaussian approximation ratio; the result ho...

Full description

Bibliographic Details
Main Authors: Yaroslav Herasymenko, Maarten Stroeks, Jonas Helsen, Barbara Terhal
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2023-08-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2023-08-10-1081/pdf/
_version_ 1797745674208411648
author Yaroslav Herasymenko
Maarten Stroeks
Jonas Helsen
Barbara Terhal
author_facet Yaroslav Herasymenko
Maarten Stroeks
Jonas Helsen
Barbara Terhal
author_sort Yaroslav Herasymenko
collection DOAJ
description We consider the problem of approximating the ground state energy of a fermionic Hamiltonian using a Gaussian state. In sharp contrast to the dense case [1, 2], we prove that strictly $q$-local $\rm {\textit {sparse}}$ fermionic Hamiltonians have a constant Gaussian approximation ratio; the result holds for any connectivity and interaction strengths. Sparsity means that each fermion participates in a bounded number of interactions, and strictly $q$-local means that each term involves exactly $q$ fermionic (Majorana) operators. We extend our proof to give a constant Gaussian approximation ratio for sparse fermionic Hamiltonians with both quartic and quadratic terms. With additional work, we also prove a constant Gaussian approximation ratio for the so-called sparse SYK model with strictly $4$-local interactions (sparse SYK-$4$ model). In each setting we show that the Gaussian state can be efficiently determined. Finally, we prove that the $O(n^{-1/2})$ Gaussian approximation ratio for the normal (dense) SYK-$4$ model extends to SYK-$q$ for even $q\gt4$, with an approximation ratio of $O(n^{1/2 – q/4})$. Our results identify non-sparseness as the prime reason that the SYK-$4$ model can fail to have a constant approximation ratio [1, 2].
first_indexed 2024-03-12T15:27:29Z
format Article
id doaj.art-551e6f2b34a848c48fc7da973fbeeab4
institution Directory Open Access Journal
issn 2521-327X
language English
last_indexed 2024-03-12T15:27:29Z
publishDate 2023-08-01
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format Article
series Quantum
spelling doaj.art-551e6f2b34a848c48fc7da973fbeeab42023-08-10T12:47:59ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2023-08-017108110.22331/q-2023-08-10-108110.22331/q-2023-08-10-1081Optimizing sparse fermionic HamiltoniansYaroslav HerasymenkoMaarten StroeksJonas HelsenBarbara TerhalWe consider the problem of approximating the ground state energy of a fermionic Hamiltonian using a Gaussian state. In sharp contrast to the dense case [1, 2], we prove that strictly $q$-local $\rm {\textit {sparse}}$ fermionic Hamiltonians have a constant Gaussian approximation ratio; the result holds for any connectivity and interaction strengths. Sparsity means that each fermion participates in a bounded number of interactions, and strictly $q$-local means that each term involves exactly $q$ fermionic (Majorana) operators. We extend our proof to give a constant Gaussian approximation ratio for sparse fermionic Hamiltonians with both quartic and quadratic terms. With additional work, we also prove a constant Gaussian approximation ratio for the so-called sparse SYK model with strictly $4$-local interactions (sparse SYK-$4$ model). In each setting we show that the Gaussian state can be efficiently determined. Finally, we prove that the $O(n^{-1/2})$ Gaussian approximation ratio for the normal (dense) SYK-$4$ model extends to SYK-$q$ for even $q\gt4$, with an approximation ratio of $O(n^{1/2 – q/4})$. Our results identify non-sparseness as the prime reason that the SYK-$4$ model can fail to have a constant approximation ratio [1, 2].https://quantum-journal.org/papers/q-2023-08-10-1081/pdf/
spellingShingle Yaroslav Herasymenko
Maarten Stroeks
Jonas Helsen
Barbara Terhal
Optimizing sparse fermionic Hamiltonians
Quantum
title Optimizing sparse fermionic Hamiltonians
title_full Optimizing sparse fermionic Hamiltonians
title_fullStr Optimizing sparse fermionic Hamiltonians
title_full_unstemmed Optimizing sparse fermionic Hamiltonians
title_short Optimizing sparse fermionic Hamiltonians
title_sort optimizing sparse fermionic hamiltonians
url https://quantum-journal.org/papers/q-2023-08-10-1081/pdf/
work_keys_str_mv AT yaroslavherasymenko optimizingsparsefermionichamiltonians
AT maartenstroeks optimizingsparsefermionichamiltonians
AT jonashelsen optimizingsparsefermionichamiltonians
AT barbaraterhal optimizingsparsefermionichamiltonians