Dissipative Boussinesq equations on non-cylindrical domains in R^n

This article concerns the initial-boundary value problem for the nonlinear Boussinesq equations on time dependent domains in $mathbb{R}^n$ with $1leq n leq 4$. Global solvability, uniqueness of solutions and the exponential decay to the energy are established provided the initial data are bound...

Full description

Bibliographic Details
Main Authors: Haroldo R. Clark, Alfredo T. Cousin, Cicero L. Frota, Juan Limaco
Format: Article
Language:English
Published: Texas State University 2010-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/08/abstr.html
Description
Summary:This article concerns the initial-boundary value problem for the nonlinear Boussinesq equations on time dependent domains in $mathbb{R}^n$ with $1leq n leq 4$. Global solvability, uniqueness of solutions and the exponential decay to the energy are established provided the initial data are bounded in some sense.
ISSN:1072-6691