Ultrasounds and a Postharvest Photoperiod to Enhance the Synthesis of Sulforaphane and Antioxidants in Rocket Sprouts

Ultrasounds (US) and LED illumination are being studied to optimize yield and quality. The objective was to evaluate the effect of a pre-sowing US treatment combined with a postharvest photoperiod including LEDs on rocket sprouts’ quality and phytochemicals during shelf life. A US treatment (35 kHz;...

Full description

Bibliographic Details
Main Authors: Lorena Martínez-Zamora, Noelia Castillejo, Francisco Artés-Hernández
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Antioxidants
Subjects:
Online Access:https://www.mdpi.com/2076-3921/11/8/1490
Description
Summary:Ultrasounds (US) and LED illumination are being studied to optimize yield and quality. The objective was to evaluate the effect of a pre-sowing US treatment combined with a postharvest photoperiod including LEDs on rocket sprouts’ quality and phytochemicals during shelf life. A US treatment (35 kHz; 30 min) applied to seeds and a postharvest photoperiod of 14 h fluorescent light (FL) + 10 h White (W), Blue (B), Red (R) LEDs or Darkness (D) were assayed. Antioxidants as phenolics and sulfur compounds (glucosinolates and isothiocyanates) were periodically monitored over 14 days at 5 °C. The US treatment increased the sulforaphane content by ~4-fold compared to CTRL seeds and sprouts. The phenolic acids and the flavonoid biosynthesis were enhanced by ~25%, ~30%, and ~55% under photoperiods with W, B, and R, respectively, compared to darkness. The total glucosinolate content was increased by >25% (W) and >45% (B and R) compared to darkness, which also reported increases of ~2.7-fold (W), ~3.6-fold (B), and ~8-fold (R) of the sulforaphane content as a main isothiocyanate. Postharvest lighting is an interesting tool to stimulate the secondary metabolism, while a US treatment was able to increase the sulforaphane content in seeds and sprouts, although no synergistic effect was reported.
ISSN:2076-3921