Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory

The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approac...

Full description

Bibliographic Details
Main Authors: Basile F. E. Curchod, Thomas J. Penfold, Ursula Rothlisberger, Ivano Tavernelli
Format: Article
Language:deu
Published: Swiss Chemical Society 2013-04-01
Series:CHIMIA
Subjects:
Online Access:https://www.chimia.ch/chimia/article/view/5368
_version_ 1824044579132801024
author Basile F. E. Curchod
Thomas J. Penfold
Ursula Rothlisberger
Ivano Tavernelli
author_facet Basile F. E. Curchod
Thomas J. Penfold
Ursula Rothlisberger
Ivano Tavernelli
author_sort Basile F. E. Curchod
collection DOAJ
description The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.
first_indexed 2024-12-23T00:13:32Z
format Article
id doaj.art-556b3939640d43329f0d35cd6f6cb59c
institution Directory Open Access Journal
issn 0009-4293
2673-2424
language deu
last_indexed 2024-12-23T00:13:32Z
publishDate 2013-04-01
publisher Swiss Chemical Society
record_format Article
series CHIMIA
spelling doaj.art-556b3939640d43329f0d35cd6f6cb59c2022-12-21T18:07:28ZdeuSwiss Chemical SocietyCHIMIA0009-42932673-24242013-04-0167410.2533/chimia.2013.218Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional TheoryBasile F. E. Curchod0Thomas J. Penfold1Ursula Rothlisberger2Ivano Tavernelli3Laboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, SwitzerlandLaboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Laboratory of Ultrafast Spectroscopy Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; SwissFEL Paul Scherrer Institute, SwitzerlandLaboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, SwitzerlandLaboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. ivano.tavernelli@epfl.ch The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed. https://www.chimia.ch/chimia/article/view/5368Born-oppenheimer approximationLinear-response time-dependent density functional theoryLocal control theoryNonadiabatic dynamics
spellingShingle Basile F. E. Curchod
Thomas J. Penfold
Ursula Rothlisberger
Ivano Tavernelli
Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
CHIMIA
Born-oppenheimer approximation
Linear-response time-dependent density functional theory
Local control theory
Nonadiabatic dynamics
title Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
title_full Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
title_fullStr Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
title_full_unstemmed Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
title_short Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
title_sort local control theory using trajectory surface hopping and linear response time dependent density functional theory
topic Born-oppenheimer approximation
Linear-response time-dependent density functional theory
Local control theory
Nonadiabatic dynamics
url https://www.chimia.ch/chimia/article/view/5368
work_keys_str_mv AT basilefecurchod localcontroltheoryusingtrajectorysurfacehoppingandlinearresponsetimedependentdensityfunctionaltheory
AT thomasjpenfold localcontroltheoryusingtrajectorysurfacehoppingandlinearresponsetimedependentdensityfunctionaltheory
AT ursularothlisberger localcontroltheoryusingtrajectorysurfacehoppingandlinearresponsetimedependentdensityfunctionaltheory
AT ivanotavernelli localcontroltheoryusingtrajectorysurfacehoppingandlinearresponsetimedependentdensityfunctionaltheory