UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS

Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial res...

Full description

Bibliographic Details
Main Authors: N. Saarinen, M. Vastaranta, R. Näsi, T. Rosnell, T. Hakala, E. Honkavaara, M. A. Wulder, V. Luoma, A. M. G. Tommaselli, N. N. Imai, E. A. W. Ribeiro, R. B. Guimarães, M. Holopainen, J. Hyyppä
Format: Article
Language:English
Published: Copernicus Publications 2017-10-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W3/171/2017/isprs-archives-XLII-3-W3-171-2017.pdf
_version_ 1819012632223416320
author N. Saarinen
N. Saarinen
M. Vastaranta
M. Vastaranta
R. Näsi
T. Rosnell
T. Hakala
E. Honkavaara
M. A. Wulder
V. Luoma
V. Luoma
A. M. G. Tommaselli
N. N. Imai
E. A. W. Ribeiro
R. B. Guimarães
M. Holopainen
M. Holopainen
J. Hyyppä
J. Hyyppä
author_facet N. Saarinen
N. Saarinen
M. Vastaranta
M. Vastaranta
R. Näsi
T. Rosnell
T. Hakala
E. Honkavaara
M. A. Wulder
V. Luoma
V. Luoma
A. M. G. Tommaselli
N. N. Imai
E. A. W. Ribeiro
R. B. Guimarães
M. Holopainen
M. Holopainen
J. Hyyppä
J. Hyyppä
author_sort N. Saarinen
collection DOAJ
description Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5&thinsp;m, with a standard deviation of 0.9&thinsp;m. The volume predictions for deciduous and dead trees were underestimated by 32.4&thinsp;m<sup>3</sup>/ha and 1.7&thinsp;m<sup>3</sup>/ha, respectively, with standard deviation of 50.2&thinsp;m<sup>3</sup>/ha for deciduous and 3.2&thinsp;m<sup>3</sup>/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.
first_indexed 2024-12-21T01:47:08Z
format Article
id doaj.art-556ba70c60c34033843c1c0a7504fb94
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-12-21T01:47:08Z
publishDate 2017-10-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-556ba70c60c34033843c1c0a7504fb942022-12-21T19:19:59ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342017-10-01XLII-3-W317117510.5194/isprs-archives-XLII-3-W3-171-2017UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTSN. Saarinen0N. Saarinen1M. Vastaranta2M. Vastaranta3R. Näsi4T. Rosnell5T. Hakala6E. Honkavaara7M. A. Wulder8V. Luoma9V. Luoma10A. M. G. Tommaselli11N. N. Imai12E. A. W. Ribeiro13R. B. Guimarães14M. Holopainen15M. Holopainen16J. Hyyppä17J. Hyyppä18Dept. of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, FinlandCentre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, National Land Survey of Finland, 04310 Masala, FinlandDept. of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, FinlandCentre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, National Land Survey of Finland, 04310 Masala, FinlandDept. of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, National Land Survey, Geodeetinrinne 2, 04310 Masala, FinlandDept. of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, National Land Survey, Geodeetinrinne 2, 04310 Masala, FinlandDept. of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, National Land Survey, Geodeetinrinne 2, 04310 Masala, FinlandDept. of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, National Land Survey, Geodeetinrinne 2, 04310 Masala, FinlandPacific Forestry Centre, National Resources Canada, 506 West Burnside Road, Victoria, British Columbia, V8Z 1M5, CanadaDept. of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, FinlandCentre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, National Land Survey of Finland, 04310 Masala, FinlandDept. of Cartography, São Paulo State University, Roberto Simonsen 305, 19060-900 Presidente Prudente, BrazilDept. of Cartography, São Paulo State University, Roberto Simonsen 305, 19060-900 Presidente Prudente, BrazilCatarinense Federal Institute, Rodovia Duque de Caxias – km 6 – s/n, 89240-000 São Francisco do Sul, BrazilDept. of Geography, São Paulo State University, Roberto Simonsen 305, 19060-900 Presidente Prudente, BrazilDept. of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, FinlandCentre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, National Land Survey of Finland, 04310 Masala, FinlandDept. of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, National Land Survey, Geodeetinrinne 2, 04310 Masala, FinlandCentre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, National Land Survey of Finland, 04310 Masala, FinlandBiodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5&thinsp;m, with a standard deviation of 0.9&thinsp;m. The volume predictions for deciduous and dead trees were underestimated by 32.4&thinsp;m<sup>3</sup>/ha and 1.7&thinsp;m<sup>3</sup>/ha, respectively, with standard deviation of 50.2&thinsp;m<sup>3</sup>/ha for deciduous and 3.2&thinsp;m<sup>3</sup>/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W3/171/2017/isprs-archives-XLII-3-W3-171-2017.pdf
spellingShingle N. Saarinen
N. Saarinen
M. Vastaranta
M. Vastaranta
R. Näsi
T. Rosnell
T. Hakala
E. Honkavaara
M. A. Wulder
V. Luoma
V. Luoma
A. M. G. Tommaselli
N. N. Imai
E. A. W. Ribeiro
R. B. Guimarães
M. Holopainen
M. Holopainen
J. Hyyppä
J. Hyyppä
UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
title_full UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
title_fullStr UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
title_full_unstemmed UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
title_short UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS AND HYPERSPECTRAL IMAGING FOR MAPPING BIODIVERSITY INDICATORS IN BOREAL FORESTS
title_sort uav based photogrammetric point clouds and hyperspectral imaging for mapping biodiversity indicators in boreal forests
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W3/171/2017/isprs-archives-XLII-3-W3-171-2017.pdf
work_keys_str_mv AT nsaarinen uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT nsaarinen uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT mvastaranta uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT mvastaranta uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT rnasi uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT trosnell uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT thakala uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT ehonkavaara uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT mawulder uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT vluoma uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT vluoma uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT amgtommaselli uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT nnimai uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT eawribeiro uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT rbguimaraes uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT mholopainen uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT mholopainen uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT jhyyppa uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests
AT jhyyppa uavbasedphotogrammetricpointcloudsandhyperspectralimagingformappingbiodiversityindicatorsinborealforests