Vowel Phoneme Segmentation for Speaker Identification Using an ANN-Based Framework

Vowel phonemes are a part of any acoustic speech signal. Vowel sounds occur in speech more frequently and with higher energy. Therefore, vowel phoneme can be used to extract different amounts of speaker discriminative information in situations where acoustic information is noise corrupted. This arti...

Full description

Bibliographic Details
Main Authors: Sarma Mousmita, Sarma Kandarpa Kumar
Format: Article
Language:English
Published: De Gruyter 2013-06-01
Series:Journal of Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1515/jisys-2012-0050
Description
Summary:Vowel phonemes are a part of any acoustic speech signal. Vowel sounds occur in speech more frequently and with higher energy. Therefore, vowel phoneme can be used to extract different amounts of speaker discriminative information in situations where acoustic information is noise corrupted. This article presents an approach to identify a speaker using the vowel sound segmented out from words spoken by the speaker. The work uses a combined self-organizing map (SOM)- and probabilistic neural network (PNN)-based approach to segment the vowel phoneme. The segmented vowel is later used to identify the speaker of the word by matching the patterns with a learning vector quantization (LVQ)-based code book. The LVQ code book is prepared by taking features of clean vowel phonemes uttered by the male and female speakers to be identified. The proposed work formulates a framework for the design of a speaker-recognition model of the Assamese language, which is spoken by ∼3 million people in the Northeast Indian state of Assam. The experimental results show that the segmentation success rates obtained using a SOM-based technique provides an increase of at least 7% compared with the discrete wavelet transform-based technique. This increase contributes to the improvement in overall performance of speaker identification by ∼3% compared with earlier related works.
ISSN:0334-1860
2191-026X