On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators

A complete algebraic characterization of the first integrals of the Higgins–Selkov, Selkov and Brusellator oscillators is given here. The existence of symmetries sometimes forces the existence of such first integrals. The nonexistence of centers for such oscillators is also proved. In order to deter...

Full description

Bibliographic Details
Main Author: Jaume Giné
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/3/438
_version_ 1797441615891005440
author Jaume Giné
author_facet Jaume Giné
author_sort Jaume Giné
collection DOAJ
description A complete algebraic characterization of the first integrals of the Higgins–Selkov, Selkov and Brusellator oscillators is given here. The existence of symmetries sometimes forces the existence of such first integrals. The nonexistence of centers for such oscillators is also proved. In order to determine the Puiseux integrability of such systems, the multiple Puiseux solutions are also studied.
first_indexed 2024-03-09T12:26:41Z
format Article
id doaj.art-5572a1e4a08641a8ba9df6956916173f
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T12:26:41Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-5572a1e4a08641a8ba9df6956916173f2023-11-30T22:34:37ZengMDPI AGSymmetry2073-89942022-02-0114343810.3390/sym14030438On the Dynamics of Higgins–Selkov, Selkov and Brusellator OscillatorsJaume Giné0Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, SpainA complete algebraic characterization of the first integrals of the Higgins–Selkov, Selkov and Brusellator oscillators is given here. The existence of symmetries sometimes forces the existence of such first integrals. The nonexistence of centers for such oscillators is also proved. In order to determine the Puiseux integrability of such systems, the multiple Puiseux solutions are also studied.https://www.mdpi.com/2073-8994/14/3/438Higgins–Selkov oscillatorSelkov oscillatorBrusellator oscillatorfirst integralscenter problem
spellingShingle Jaume Giné
On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
Symmetry
Higgins–Selkov oscillator
Selkov oscillator
Brusellator oscillator
first integrals
center problem
title On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
title_full On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
title_fullStr On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
title_full_unstemmed On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
title_short On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators
title_sort on the dynamics of higgins selkov selkov and brusellator oscillators
topic Higgins–Selkov oscillator
Selkov oscillator
Brusellator oscillator
first integrals
center problem
url https://www.mdpi.com/2073-8994/14/3/438
work_keys_str_mv AT jaumegine onthedynamicsofhigginsselkovselkovandbrusellatoroscillators