Summary: | In a previous study, we proposed an open quantum network model of a quantum battery (QB) that possesses dark states owing to its structural exchange symmetries. While in a dark state, the QB is capable of storing an exciton without any environment-induced population losses. However, when the structural exchange symmetry is broken, the QB begins to discharge the exciton towards its exit site. In this article, we start by demonstrating that this QB is not only loss-free with respect to exciton population during the storage phase, but also with respect to the QB energy. We then explore the exciton population and energy transfer dynamics of the QB during the discharge phase over a wide range of site energies, bath temperatures, and bath reorganization energies. Our results shed light on how to optimize the QB’s population and energy transfer dynamics for different purposes.
|