Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites
This study aims to investigate the dry sliding wear behaviour of AA-7075 based metal matrix composites developed by powder metallurgy route. AA-7075 metal matrix composites have been developed with 1–15 vol% micrometric yttrium oxide particulate reinforcement and 0.1–3 vol% nanometric yttrium oxide...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-06-01
|
Series: | Journal of Alloys and Metallurgical Systems |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2949917824000142 |
_version_ | 1797249075297386496 |
---|---|
author | Tilak C. Joshi Sanjay S. Rathore Vikram V. Dabhade U. Prakash |
author_facet | Tilak C. Joshi Sanjay S. Rathore Vikram V. Dabhade U. Prakash |
author_sort | Tilak C. Joshi |
collection | DOAJ |
description | This study aims to investigate the dry sliding wear behaviour of AA-7075 based metal matrix composites developed by powder metallurgy route. AA-7075 metal matrix composites have been developed with 1–15 vol% micrometric yttrium oxide particulate reinforcement and 0.1–3 vol% nanometric yttrium oxide particulate reinforcement by sinter forging.The matrix and reinforcing powders were blended together to obtain a homogeneous composite powder mixture which was cold compacted and further sintered under pure nitrogen atmosphere. The sintered compacts were forged in a closed die to attain full density. The hot forged samples were further artificially age hardened to peak hardness. Wear behavior of AA-7075 and its composites at peak aged condition were investigated at various loads and sliding speeds. The coefficient of friction and wear rate were determined with respect to different volume fractions of micrometric and nanometric yttrium oxide additions to AA-7075 alloy matrix. The overall wear at a constant volume fraction was found to be lower for the compositions having nanometric Y2O3 as compared to micrometric Y2O3. Further the basic wear mechanism of pure aluminum 7075 alloy and reinforced composites consisted of adhesive wear with plastic deformation followed by abrasive wear (due to hard reinforcement particles).Material strengthening by precipitation hardening and reinforcement addition and the role of the forging operation and yttria reinforcements in the removal and uniform distribution of oxide layers present on the AA-7075 powder particles were accountable for the improvement in the wear resistance of the composites. |
first_indexed | 2024-04-24T20:24:43Z |
format | Article |
id | doaj.art-557adf31a8cc4c388f5a3b04df97e597 |
institution | Directory Open Access Journal |
issn | 2949-9178 |
language | English |
last_indexed | 2024-04-24T20:24:43Z |
publishDate | 2024-06-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Alloys and Metallurgical Systems |
spelling | doaj.art-557adf31a8cc4c388f5a3b04df97e5972024-03-22T05:41:24ZengElsevierJournal of Alloys and Metallurgical Systems2949-91782024-06-016100067Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix compositesTilak C. Joshi0Sanjay S. Rathore1Vikram V. Dabhade2U. Prakash3Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; CSIR-Advanced Materials and Processes Research Institute, Bhopal 462026, IndiaDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Shri Vishwakarma Skill University, Dudhola, Palwal, Haryana, IndiaDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Corresponding author.Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, IndiaThis study aims to investigate the dry sliding wear behaviour of AA-7075 based metal matrix composites developed by powder metallurgy route. AA-7075 metal matrix composites have been developed with 1–15 vol% micrometric yttrium oxide particulate reinforcement and 0.1–3 vol% nanometric yttrium oxide particulate reinforcement by sinter forging.The matrix and reinforcing powders were blended together to obtain a homogeneous composite powder mixture which was cold compacted and further sintered under pure nitrogen atmosphere. The sintered compacts were forged in a closed die to attain full density. The hot forged samples were further artificially age hardened to peak hardness. Wear behavior of AA-7075 and its composites at peak aged condition were investigated at various loads and sliding speeds. The coefficient of friction and wear rate were determined with respect to different volume fractions of micrometric and nanometric yttrium oxide additions to AA-7075 alloy matrix. The overall wear at a constant volume fraction was found to be lower for the compositions having nanometric Y2O3 as compared to micrometric Y2O3. Further the basic wear mechanism of pure aluminum 7075 alloy and reinforced composites consisted of adhesive wear with plastic deformation followed by abrasive wear (due to hard reinforcement particles).Material strengthening by precipitation hardening and reinforcement addition and the role of the forging operation and yttria reinforcements in the removal and uniform distribution of oxide layers present on the AA-7075 powder particles were accountable for the improvement in the wear resistance of the composites.http://www.sciencedirect.com/science/article/pii/S2949917824000142WearAA-7075Metal matrix composites (MMCs)Yttrium oxideSinter-forging |
spellingShingle | Tilak C. Joshi Sanjay S. Rathore Vikram V. Dabhade U. Prakash Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites Journal of Alloys and Metallurgical Systems Wear AA-7075 Metal matrix composites (MMCs) Yttrium oxide Sinter-forging |
title | Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites |
title_full | Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites |
title_fullStr | Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites |
title_full_unstemmed | Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites |
title_short | Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites |
title_sort | dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced aa 7075 matrix composites |
topic | Wear AA-7075 Metal matrix composites (MMCs) Yttrium oxide Sinter-forging |
url | http://www.sciencedirect.com/science/article/pii/S2949917824000142 |
work_keys_str_mv | AT tilakcjoshi dryslidingwearbehaviorofsinterforgedmicrometricandnanometricyttriumoxidereinforcedaa7075matrixcomposites AT sanjaysrathore dryslidingwearbehaviorofsinterforgedmicrometricandnanometricyttriumoxidereinforcedaa7075matrixcomposites AT vikramvdabhade dryslidingwearbehaviorofsinterforgedmicrometricandnanometricyttriumoxidereinforcedaa7075matrixcomposites AT uprakash dryslidingwearbehaviorofsinterforgedmicrometricandnanometricyttriumoxidereinforcedaa7075matrixcomposites |