Haar wavelet fractional derivative
In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Estonian Academy Publishers
2022-02-01
|
Series: | Proceedings of the Estonian Academy of Sciences |
Subjects: | |
Online Access: | https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdf |
_version_ | 1798036169415458816 |
---|---|
author | Carlo Cattani |
author_facet | Carlo Cattani |
author_sort | Carlo Cattani |
collection | DOAJ |
description | In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral. |
first_indexed | 2024-04-11T21:08:44Z |
format | Article |
id | doaj.art-5588507fe2874937962e99957faf7161 |
institution | Directory Open Access Journal |
issn | 1736-6046 1736-7530 |
language | English |
last_indexed | 2024-04-11T21:08:44Z |
publishDate | 2022-02-01 |
publisher | Estonian Academy Publishers |
record_format | Article |
series | Proceedings of the Estonian Academy of Sciences |
spelling | doaj.art-5588507fe2874937962e99957faf71612022-12-22T04:03:08ZengEstonian Academy PublishersProceedings of the Estonian Academy of Sciences1736-60461736-75302022-02-01711556410.3176/proc.2022.1.0510.3176/proc.2022.1.05Haar wavelet fractional derivativeCarlo Cattani0Engineering School, DEIM, University of “La Tuscia”, Via del Paradiso 47, 01100 Viterbo; DiFarma, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy; ccattani@unisa.itIn this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdfwavelet theoryfractional calculushaar waveletoperational matrix. |
spellingShingle | Carlo Cattani Haar wavelet fractional derivative Proceedings of the Estonian Academy of Sciences wavelet theory fractional calculus haar wavelet operational matrix. |
title | Haar wavelet fractional derivative |
title_full | Haar wavelet fractional derivative |
title_fullStr | Haar wavelet fractional derivative |
title_full_unstemmed | Haar wavelet fractional derivative |
title_short | Haar wavelet fractional derivative |
title_sort | haar wavelet fractional derivative |
topic | wavelet theory fractional calculus haar wavelet operational matrix. |
url | https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdf |
work_keys_str_mv | AT carlocattani haarwaveletfractionalderivative |