Haar wavelet fractional derivative

In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.

Bibliographic Details
Main Author: Carlo Cattani
Format: Article
Language:English
Published: Estonian Academy Publishers 2022-02-01
Series:Proceedings of the Estonian Academy of Sciences
Subjects:
Online Access:https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdf
_version_ 1798036169415458816
author Carlo Cattani
author_facet Carlo Cattani
author_sort Carlo Cattani
collection DOAJ
description In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.
first_indexed 2024-04-11T21:08:44Z
format Article
id doaj.art-5588507fe2874937962e99957faf7161
institution Directory Open Access Journal
issn 1736-6046
1736-7530
language English
last_indexed 2024-04-11T21:08:44Z
publishDate 2022-02-01
publisher Estonian Academy Publishers
record_format Article
series Proceedings of the Estonian Academy of Sciences
spelling doaj.art-5588507fe2874937962e99957faf71612022-12-22T04:03:08ZengEstonian Academy PublishersProceedings of the Estonian Academy of Sciences1736-60461736-75302022-02-01711556410.3176/proc.2022.1.0510.3176/proc.2022.1.05Haar wavelet fractional derivativeCarlo Cattani0Engineering School, DEIM, University of “La Tuscia”, Via del Paradiso 47, 01100 Viterbo; DiFarma, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy; ccattani@unisa.itIn this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdfwavelet theoryfractional calculushaar waveletoperational matrix.
spellingShingle Carlo Cattani
Haar wavelet fractional derivative
Proceedings of the Estonian Academy of Sciences
wavelet theory
fractional calculus
haar wavelet
operational matrix.
title Haar wavelet fractional derivative
title_full Haar wavelet fractional derivative
title_fullStr Haar wavelet fractional derivative
title_full_unstemmed Haar wavelet fractional derivative
title_short Haar wavelet fractional derivative
title_sort haar wavelet fractional derivative
topic wavelet theory
fractional calculus
haar wavelet
operational matrix.
url https://kirj.ee/wp-content/plugins/kirj/pub/proc-1-2022-55-64_20220204154542.pdf
work_keys_str_mv AT carlocattani haarwaveletfractionalderivative