Characterizing adjuvants’ effects at murine immunoglobulin repertoire level

Summary: Generating large-scale, high-fidelity sequencing data is challenging and, furthermore, not much has been done to characterize adjuvants’ effects at the repertoire level. Thus, we introduced an IgSeq pipeline that standardized library prep protocols and data analysis functions for accurate r...

Full description

Bibliographic Details
Main Authors: Feng Feng, Rachel Yuen, Yumei Wang, Axin Hua, Thomas B. Kepler, Lee M. Wetzler
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223028262
Description
Summary:Summary: Generating large-scale, high-fidelity sequencing data is challenging and, furthermore, not much has been done to characterize adjuvants’ effects at the repertoire level. Thus, we introduced an IgSeq pipeline that standardized library prep protocols and data analysis functions for accurate repertoire profiling. We then studied systemically effects of CpG and Alum on the Ig heavy chain repertoire using the ovalbumin (OVA) murine model. Ig repertoires of different tissues (spleen and bone marrow) and isotypes (IgG and IgM) were examined and compared in IGHV mutation, gene usage, CDR3 length, clonal diversity, and clonal selection. We found Ig repertoires of different compartments exhibited distinguishable profiles at the non-immunized steady state, and distinctions became more pronounced upon adjuvanted immunizations. Notably, Alum and CpG effects exhibited different tissue- and isotype-preferences. The former led to increased diversity of abundant clones in bone marrow, and the latter promoted the selection of IgG clones in both tissues.
ISSN:2589-0042