On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property

This article delves into the spectral problem associated with a multiple differentiation operator that features an integral perturbation of boundary conditions of one specific type, namely, regular but not strengthened regular. The integral perturbation is characterized by the function <inline-fo...

Full description

Bibliographic Details
Main Authors: Makhmud Sadybekov, Nurlan Imanbaev
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/20/4364
_version_ 1797573083570110464
author Makhmud Sadybekov
Nurlan Imanbaev
author_facet Makhmud Sadybekov
Nurlan Imanbaev
author_sort Makhmud Sadybekov
collection DOAJ
description This article delves into the spectral problem associated with a multiple differentiation operator that features an integral perturbation of boundary conditions of one specific type, namely, regular but not strengthened regular. The integral perturbation is characterized by the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, which belongs to the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. The concept of problems involving integral perturbations of boundary conditions has been the subject of previous studies, and the spectral properties of such problems have been examined in various early papers. What sets the problem under consideration apart is that the system of eigenfunctions for the unperturbed problem (when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>) lacks the property of forming a basis. To address this, a characteristic determinant for the spectral problem has been constructed. It has been established that the set of functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, for which the system of eigenfunctions of the perturbed problem does not constitute an unconditional basis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>, is dense within the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. Furthermore, it has been demonstrated that the adjoint operator shares a similar structure.
first_indexed 2024-03-10T21:04:38Z
format Article
id doaj.art-55984f84f7134eba9d4e972c5020c896
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:04:38Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-55984f84f7134eba9d4e972c5020c8962023-11-19T17:14:57ZengMDPI AGMathematics2227-73902023-10-011120436410.3390/math11204364On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis PropertyMakhmud Sadybekov0Nurlan Imanbaev1Institute of Mathematics and Mathematical Modeling, Almaty 050010, KazakhstanInstitute of Mathematics and Mathematical Modeling, Almaty 050010, KazakhstanThis article delves into the spectral problem associated with a multiple differentiation operator that features an integral perturbation of boundary conditions of one specific type, namely, regular but not strengthened regular. The integral perturbation is characterized by the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, which belongs to the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. The concept of problems involving integral perturbations of boundary conditions has been the subject of previous studies, and the spectral properties of such problems have been examined in various early papers. What sets the problem under consideration apart is that the system of eigenfunctions for the unperturbed problem (when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>) lacks the property of forming a basis. To address this, a characteristic determinant for the spectral problem has been constructed. It has been established that the set of functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, for which the system of eigenfunctions of the perturbed problem does not constitute an unconditional basis in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>, is dense within the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>2</mn></msub><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mn>1</mn></mfenced></mrow></semantics></math></inline-formula>. Furthermore, it has been demonstrated that the adjoint operator shares a similar structure.https://www.mdpi.com/2227-7390/11/20/4364second-order differential operatoreigenvaluesystem of root vectorsbasis propertyintegral perturbation of boundary conditionscharacteristic determinant
spellingShingle Makhmud Sadybekov
Nurlan Imanbaev
On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
Mathematics
second-order differential operator
eigenvalue
system of root vectors
basis property
integral perturbation of boundary conditions
characteristic determinant
title On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
title_full On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
title_fullStr On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
title_full_unstemmed On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
title_short On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property
title_sort on system of root vectors of perturbed regular second order differential operator not possessing basis property
topic second-order differential operator
eigenvalue
system of root vectors
basis property
integral perturbation of boundary conditions
characteristic determinant
url https://www.mdpi.com/2227-7390/11/20/4364
work_keys_str_mv AT makhmudsadybekov onsystemofrootvectorsofperturbedregularsecondorderdifferentialoperatornotpossessingbasisproperty
AT nurlanimanbaev onsystemofrootvectorsofperturbedregularsecondorderdifferentialoperatornotpossessingbasisproperty