Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit

The main purpose of this paper is to study the initial layer problem and the infinite Prandtl number limit of Rayleigh-Bénard convection with an ill prepared initial data. We use the asymptotic expansion methods of singular perturbation theory and the two-time-scale approach to obtain an exact appro...

Full description

Bibliographic Details
Main Authors: Fan Xiaoting, Wang Shu, Xu Wen-Qing, Liu Mingshuo
Format: Article
Language:English
Published: De Gruyter 2018-10-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0094
_version_ 1823947285381251072
author Fan Xiaoting
Wang Shu
Xu Wen-Qing
Liu Mingshuo
author_facet Fan Xiaoting
Wang Shu
Xu Wen-Qing
Liu Mingshuo
author_sort Fan Xiaoting
collection DOAJ
description The main purpose of this paper is to study the initial layer problem and the infinite Prandtl number limit of Rayleigh-Bénard convection with an ill prepared initial data. We use the asymptotic expansion methods of singular perturbation theory and the two-time-scale approach to obtain an exact approximating solution and the convergence rates O(ε32)$O(\varepsilon^{\frac{3}{2}})$ and O(ε2).
first_indexed 2024-12-17T09:44:00Z
format Article
id doaj.art-559a8f89e8c946a3bcc1fdd33dcee76d
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-17T09:44:00Z
publishDate 2018-10-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-559a8f89e8c946a3bcc1fdd33dcee76d2022-12-21T21:53:48ZengDe GruyterOpen Mathematics2391-54552018-10-011611145116010.1515/math-2018-0094math-2018-0094Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limitFan Xiaoting0Wang Shu1Xu Wen-Qing2Liu Mingshuo3College of Applied Sciences, Beijing University of Technology, Beijing100124, ChinaCollege of Applied Sciences, Beijing University of Technology, Beijing100124, ChinaDepartment of Mathematics and Statistics, California State University, Long Beach, CA 90840, USACollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qian Wan Gang, Road 579, Huangdao District, Qingdao266590, ChinaThe main purpose of this paper is to study the initial layer problem and the infinite Prandtl number limit of Rayleigh-Bénard convection with an ill prepared initial data. We use the asymptotic expansion methods of singular perturbation theory and the two-time-scale approach to obtain an exact approximating solution and the convergence rates O(ε32)$O(\varepsilon^{\frac{3}{2}})$ and O(ε2).https://doi.org/10.1515/math-2018-0094boussinesq systemrayleigh-bénard convectioninfinite prandtl number limitinitial layersasymptotic expansiontwo-time-scale approach35b2535b4035k57
spellingShingle Fan Xiaoting
Wang Shu
Xu Wen-Qing
Liu Mingshuo
Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
Open Mathematics
boussinesq system
rayleigh-bénard convection
infinite prandtl number limit
initial layers
asymptotic expansion
two-time-scale approach
35b25
35b40
35k57
title Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
title_full Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
title_fullStr Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
title_full_unstemmed Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
title_short Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
title_sort initial layer problem of the boussinesq system for rayleigh benard convection with infinite prandtl number limit
topic boussinesq system
rayleigh-bénard convection
infinite prandtl number limit
initial layers
asymptotic expansion
two-time-scale approach
35b25
35b40
35k57
url https://doi.org/10.1515/math-2018-0094
work_keys_str_mv AT fanxiaoting initiallayerproblemoftheboussinesqsystemforrayleighbenardconvectionwithinfiniteprandtlnumberlimit
AT wangshu initiallayerproblemoftheboussinesqsystemforrayleighbenardconvectionwithinfiniteprandtlnumberlimit
AT xuwenqing initiallayerproblemoftheboussinesqsystemforrayleighbenardconvectionwithinfiniteprandtlnumberlimit
AT liumingshuo initiallayerproblemoftheboussinesqsystemforrayleighbenardconvectionwithinfiniteprandtlnumberlimit