Electrical Properties Analysis of Dielectric Thin Films 0.2BaTiO3 – 0.8BaZr0.5Ti0.5O3 on Fluorine Doped Tin Oxide Substrate

Ferroelectric thin films of 0.2BaTiO3 – 0.8BaZr0.5Ti0.5O3 (BT-BZT) are dielectric materials applied in various sensors, particularly in capacitor manufacturing, due to their excellent electrical properties. This ferroelectric material also has a high dielectric constant value, such that it is suitab...

Full description

Bibliographic Details
Main Authors: Rahmi Dewi, Nursyafni, Siti Rahma Daulay, Teguh P. Hadilala, Sri Ningsih Sitorus, Zulfa Nasir, Ari Sulistyo Rini, Yanuar Hamzah, Zuhdi
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2024-02-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392024000100204&tlng=en
Description
Summary:Ferroelectric thin films of 0.2BaTiO3 – 0.8BaZr0.5Ti0.5O3 (BT-BZT) are dielectric materials applied in various sensors, particularly in capacitor manufacturing, due to their excellent electrical properties. This ferroelectric material also has a high dielectric constant value, such that it is suitable for use in Ferroelectric Random Access Memory (FeRAM) and microwaves. Therefore, this study aimed to synthesize thin BT-BZT films with annealing temperature variations of 700 °C, 750 °C, and 800 °C. To achieve this, the sol-gel method was applied to Fluorine Doped Tin Oxide (FTO) substrate, a selected technique for its simplicity and cost-effectiveness. The electrochemical properties were characterized using electrochemical impedance spectroscopy (EIS). The research results show that at a frequency of 100 Hz, the highest dielectric constant obtained was 58975.43 at a temperature of 800 °C. This temperature has the highest resistance compared to other samples. The highest capacitance value is 2.9 µF at a temperature of 700 oC. Therefore, it was concluded that the annealing temperature influenced the dielectric constant and the capacitance values of the capacitor.
ISSN:1516-1439