Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach

This article aims to attempt to increase the number of satellites that can be used for monitoring soil moisture to obtain more precise results using GNSS-IR (Global Navigation Satellite System-Interferometric Reflectometry) technology to estimate soil moisture. We introduce a soil moisture inversion...

Full description

Bibliographic Details
Main Authors: Lili Jing, Lei Yang, Wentao Yang, Tianhe Xu, Fan Gao, Yilin Lu, Bo Sun, Dongkai Yang, Xuebao Hong, Nazi Wang, Hongliang Ruan, José Darrozes
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/19/4013
_version_ 1797515775216451584
author Lili Jing
Lei Yang
Wentao Yang
Tianhe Xu
Fan Gao
Yilin Lu
Bo Sun
Dongkai Yang
Xuebao Hong
Nazi Wang
Hongliang Ruan
José Darrozes
author_facet Lili Jing
Lei Yang
Wentao Yang
Tianhe Xu
Fan Gao
Yilin Lu
Bo Sun
Dongkai Yang
Xuebao Hong
Nazi Wang
Hongliang Ruan
José Darrozes
author_sort Lili Jing
collection DOAJ
description This article aims to attempt to increase the number of satellites that can be used for monitoring soil moisture to obtain more precise results using GNSS-IR (Global Navigation Satellite System-Interferometric Reflectometry) technology to estimate soil moisture. We introduce a soil moisture inversion model by using GPS SNR (Signal-to-Noise Ratio) data and propose a novel Robust Kalman Filter soil moisture inversion model based on that. We validate our models on a data set collected at Lamasquère, France. This paper also compares the precision of the Robust Kalman Filter model with the conventional linear regression method and robust regression model in three different scenarios: (1) single-band univariate regression, by using only one observable feature such as frequency, amplitude, or phase; (2) dual-band data fusion univariate regression; and (3) dual-band data fusion multivariate regression. First, the proposed models achieve higher accuracy than the conventional method for single-band univariate regression, especially by using the phase as the input feature. Second, dual-band univariate data fusion achieves higher accuracy than single-band and the result of the Robust Kalman Filter model correlates better to the in situ measurement. Third, multivariate variable fusion improves the accuracy for both models, but the Robust Kalman Filter model achieves better improvement. Overall, the Robust Kalman Filter model shows better results in all the scenarios.
first_indexed 2024-03-10T06:52:02Z
format Article
id doaj.art-55c5dc954dfa4d6d851526ac4b3ed5ff
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T06:52:02Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-55c5dc954dfa4d6d851526ac4b3ed5ff2023-11-22T16:44:12ZengMDPI AGRemote Sensing2072-42922021-10-011319401310.3390/rs13194013Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion ApproachLili Jing0Lei Yang1Wentao Yang2Tianhe Xu3Fan Gao4Yilin Lu5Bo Sun6Dongkai Yang7Xuebao Hong8Nazi Wang9Hongliang Ruan10José Darrozes11Institute of Space Science, Shandong University, Weihai 264209, ChinaCollege of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, ChinaSchool of Geological Engineering and Surveying and Mapping, Chang’an University, Xi’an 710054, ChinaInstitute of Space Science, Shandong University, Weihai 264209, ChinaInstitute of Space Science, Shandong University, Weihai 264209, ChinaChina Association of Remote Sensing Application, Beijing 100094, ChinaCollege of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, ChinaSchool of Electronic and Information Engineering, Beihang University, Beijing 100191, ChinaSchool of Electronic and Information Engineering, Beihang University, Beijing 100191, ChinaInstitute of Space Science, Shandong University, Weihai 264209, ChinaBusiness School, Jinhua Polytechnic, Jinhua 321000, ChinaLaboratoire Géosciences Environnement Toulouse, Université Paul Sabatier, 31400 Toulouse, FranceThis article aims to attempt to increase the number of satellites that can be used for monitoring soil moisture to obtain more precise results using GNSS-IR (Global Navigation Satellite System-Interferometric Reflectometry) technology to estimate soil moisture. We introduce a soil moisture inversion model by using GPS SNR (Signal-to-Noise Ratio) data and propose a novel Robust Kalman Filter soil moisture inversion model based on that. We validate our models on a data set collected at Lamasquère, France. This paper also compares the precision of the Robust Kalman Filter model with the conventional linear regression method and robust regression model in three different scenarios: (1) single-band univariate regression, by using only one observable feature such as frequency, amplitude, or phase; (2) dual-band data fusion univariate regression; and (3) dual-band data fusion multivariate regression. First, the proposed models achieve higher accuracy than the conventional method for single-band univariate regression, especially by using the phase as the input feature. Second, dual-band univariate data fusion achieves higher accuracy than single-band and the result of the Robust Kalman Filter model correlates better to the in situ measurement. Third, multivariate variable fusion improves the accuracy for both models, but the Robust Kalman Filter model achieves better improvement. Overall, the Robust Kalman Filter model shows better results in all the scenarios.https://www.mdpi.com/2072-4292/13/19/4013GNSSSignal-to-Noise Ratiosoil moistureRobust Kalman Filterdata fusion
spellingShingle Lili Jing
Lei Yang
Wentao Yang
Tianhe Xu
Fan Gao
Yilin Lu
Bo Sun
Dongkai Yang
Xuebao Hong
Nazi Wang
Hongliang Ruan
José Darrozes
Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
Remote Sensing
GNSS
Signal-to-Noise Ratio
soil moisture
Robust Kalman Filter
data fusion
title Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
title_full Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
title_fullStr Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
title_full_unstemmed Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
title_short Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data—A Dual-Band Data Fusion Approach
title_sort robust kalman filter soil moisture inversion model using gps snr data a dual band data fusion approach
topic GNSS
Signal-to-Noise Ratio
soil moisture
Robust Kalman Filter
data fusion
url https://www.mdpi.com/2072-4292/13/19/4013
work_keys_str_mv AT lilijing robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT leiyang robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT wentaoyang robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT tianhexu robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT fangao robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT yilinlu robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT bosun robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT dongkaiyang robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT xuebaohong robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT naziwang robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT hongliangruan robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach
AT josedarrozes robustkalmanfiltersoilmoistureinversionmodelusinggpssnrdataadualbanddatafusionapproach