Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China

Excessive use of nitrogen (N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary. Previous studies mostly established critical N dilution curves based on abovegroun...

Full description

Bibliographic Details
Main Authors: Sheng-cai QIANG, Fu-cang ZHANG, Miles Dyck, Yan ZHANG, You-zhen XIANG, Jun-liang FAN
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Journal of Integrative Agriculture
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095311919626882
Description
Summary:Excessive use of nitrogen (N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary. Previous studies mostly established critical N dilution curves based on aboveground dry matter (DM) or leaf dry matter (LDM) and stem dry matter (SDM), to diagnose the N nutrition status of the whole plant. As these methods are time consuming, we investigated the more rapidly determined leaf area index (LAI) method to establish the critical nitrogen (Nc) dilution curve, and the curve was used to diagnose plant N status for winter wheat in Guanzhong Plain in Northwest China. Field experiments were conducted using four N fertilization levels (0, 105, 210 and 315 kg ha−1) applied to six wheat cultivars in the 2013–2014 and 2014–2015 growing seasons. LAI, DM, plant N concentration (PNC) and grain yield were determined. Data points from four cultivars were used for establishing the Nc curve and data points from the remaining two cultivars were used for validating the curve. The Nc dilution curve was validated for N-limiting and non-N-limiting growth conditions and there was good agreement between estimated and observed values. The N nutrition index (NNI) ranged from 0.41 to 1.25 and the accumulated plant N deficit (Nand) ranged from 60.38 to −17.92 kg ha−1 during the growing season. The relative grain yield was significantly affected by NNI and was adequately described with a parabolic function. The Nc curve based on LAI can be adopted as an alternative and more rapid approach to diagnose plant N status to support N fertilization decisions during the vegetative growth of winter wheat in Guanzhong Plain in Northwest China.
ISSN:2095-3119